首页> 外文期刊>Expert systems with applications >An efficient approach for outlier detection from uncertain data streams based on maximal frequent patterns
【24h】

An efficient approach for outlier detection from uncertain data streams based on maximal frequent patterns

机译:基于最大频繁模式的不确定数据流中的高效检测方法

获取原文
获取原文并翻译 | 示例

摘要

Outlier identification is an important technology to improve the credibility of data and aims at detecting patterns that rarely appear and exhibit a significant difference from other data. However, the detection accuracy achieved by the simple deviation factors of existing pattern-based outlier detection methods is not competitive. In addition, given the large scale of uncertain data streams, the efficiency of many pattern-based outlier detection methods is not high because they use a vast number of frequent patterns to conduct the outlier detection. In this paper, to contend with the uncertain data streams, we propose a maximal-frequent-pattern-based outlier detection method, namely, MFP-OD, for identifying the outliers with a lower time cost. For further improving the detection accuracy of existing outlier detection methods, we design three deviation factors to measure the deviation degree of each transaction. The experimental results indicate that the proposed MFP-OD method can quickly and accurately identify the outliers from uncertain data streams. (c) 2020 Elsevier Ltd. All rights reserved.
机译:异常值识别是提高数据可信度的重要技术,并旨在检测很少出现的模式,并与其他数据具有显着差异。然而,通过现有的基于模式的异常检测方法的简单偏差因子实现的检测精度不具有竞争力。此外,鉴于大规模的不确定数据流,许多基于模式的异常检测方法的效率不高,因为它们使用了大量频繁模式来进行异常检测。在本文中,要与不确定的数据流竞争,我们提出了一种最大频繁的模式的异常检测方法,即MFP-OD,用于识别具有较低时间成本的异常值。为了进一步提高现有异常检测方法的检测准确性,我们设计了三个偏差因子来测量每个交易的偏差程度。实验结果表明,所提出的MFP-OD方法可以快速准确地识别来自不确定数据流的异常值。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号