首页> 外文期刊>Expert systems with applications >Optimized micro-hydro power plants layout design using messy genetic algorithms
【24h】

Optimized micro-hydro power plants layout design using messy genetic algorithms

机译:优化的微水电站使用凌乱遗传算法的布局设计

获取原文
获取原文并翻译 | 示例

摘要

Micro Hydro-Power Plants (MHPP) represent a powerful and effective solution to address the problem of energy poverty in rural remote areas, with the advantage of preserving the natural resources and minimizing the impact on the environment. Nevertheless, the lack of resources and qualified manpower usually constitutes a big obstacle to its adequate application, generally translating into sub-optimal generation systems with poor levels of efficiency. Therefore, the study and development of expert, simple and efficient strategies to assist the design of these installations is of especial relevance. This work proposes a design methodology based on a tailored messy evolutionary computational approach, with the objective of finding the most suitable layout of MHPP, considering several constraints derived from a minimal power supply requirement, the maximum flow usage, and the physical feasibility of the plant in accordance with the real terrain profile. This profile is built on the basis of a discrete topographic survey, by means of a shape-preserving interpolation, which permits the application of a continuous variable-length Messy Genetic Algorithm (MGA). The optimization problem is then formulated in both single-objective (cost minimization) and multi-objective (cost minimization and power supply maximization) modes, including the study of the Pareto dominance. The algorithm is applied to a real scenario in a remote community in Honduras, obtaining a 56.96% of cost reduction with respect to previous works. (C) 2020 Elsevier Ltd. All rights reserved.
机译:微水力发电厂(MHPP)代表了一种强大而有效的解决方案,解决了农村偏远地区的能源贫困问题,优势保护自然资源,最大限度地减少对环境的影响。然而,缺乏资源和合格的人力通常构成其适当应用的巨大障碍,通常转化为具有较差效率水平的次优发电系统。因此,专家的研究和开发,简单高效的策略,以协助这些装置的设计具有特殊相关性。这项工作提出了一种基于量身定制的杂乱进化计算方法的设计方法,目的是寻找MHPP最合适的布局,考虑到从最小电源要求,最大流量使用以及植物的物理可行性导出的若干约束按照真实的地形档案。该配置文件是基于形状保护插值的离散地形调查构建,这允许应用连续的可变长度杂乱遗传算法(MGA)。然后在单目标(成本最小化)和多目标(成本最小化和电源最大化)模式中配制优化问题,包括帕累托优势的研究。该算法应用于洪都拉斯的远程社区中的真实情景,从而获得了与以前的作品的56.96%的成本降低。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号