首页> 外文期刊>Expert systems with applications >Oslcfit (organic simultaneous LSTM and CNN Fit): A novel deep learning based solution for sentiment polarity classification of reviews
【24h】

Oslcfit (organic simultaneous LSTM and CNN Fit): A novel deep learning based solution for sentiment polarity classification of reviews

机译:OSLCFIT(有机同时LSTM和CNN FIT):一种基于深度学习的情感极性评论分类

获取原文
获取原文并翻译 | 示例

摘要

Review sentiment influences purchase decisions and indicates user satisfaction. Inferring the sentiment from reviews is an essential task in Natural Language Processing and has managerial implications for improving customer satisfaction and item quality. Traditional approaches to polarity classification use bag-of-words techniques and lexicons combined with machine learning. These approaches suffer from an inability to capture semantics and context. We propose a Deep Learning solution called OSLCFit (Organic Simultaneous LSTM and CNN Fit). In our architecture, we include all the components of a CNN until but not including the final fully connected layer and do the same in case of a bi-directional LSTM. The final fully connected layer in our architecture consists of fixed length features from the CNN, and features for both variable length and temporal dependencies from the bi-directional LSTM. The solution fine-tunes Language Model embeddings for the specific task of polarity classification using transfer learning, enabling the capture of semantics and context. The key contribution of this paper is the combination of features from both a CNN and a bi-directional LSTM into a single architecture with a single optimizer. This combination forms an organic combination and uses embeddings fine-tuned to the reviews for the specific purpose of sentiment polarity classification. The solution is benchmarked on six different datasets such as SMS Spam, YouTube Spam, Large Movie Review Corpus, Stanford Sentiment Treebank, Amazon Cellphone & Accessories and Yelp, where it beats existing benchmarks and scales to large datasets. The source code is available for the purposes of reproducible research on GitHub. (C) 2020 Elsevier Ltd. All rights reserved.
机译:审查情绪影响购买决策并表明用户满意度。推断审查情绪是自然语言处理中的重要任务,并对提高客户满意度和物品质量具有管理影响。传统的极性分类方法使用袋式技术和词汇与机器学习相结合。这些方法无法捕获语义和背景。我们提出了一种称为OSLCFIT的深度学习解决方案(有机同时LSTM和CNN FIT)。在我们的体系结构中,我们包括CNN的所有组件,直到但不包括最终完全连接的层,并且在双向LSTM的情况下执行相同的操作。我们架构中的最终完全连接的层由CNN的固定长度特征组成,以及来自双向LSTM的可变长度和时间依赖性的特征。解决方案使用传输学习进行微调语言模型嵌入对极性分类的特定任务,从而启用语义和上下文。本文的主要贡献是CNN和双向LSTM的特征的组合,进入具有单个优化器的单个架构。这种组合形成有机组合,并使用微调至评定的嵌入式对情感极性分类的特定目的。该解决方案在六种不同的数据集中基准测试,例如SMS垃圾邮件,YouTube垃圾邮件,大型电影评论语料库,斯坦福情绪树木银行,亚马逊手机和配件和yelp,在那里它将现有的基准和秤击败到大型数据集。源代码可用于对GitHub可重复研究的目的。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号