首页> 外文期刊>Expert systems with applications >Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines
【24h】

Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines

机译:高效的多人源前哨果蝇驱动优化器:支持向量机的框架和进步

获取原文
获取原文并翻译 | 示例

摘要

The original fruit fly algorithm (FOA) in simple structure is easy to understand, but it has a slow convergence rate and tends to be trapped in the local optimal solutions. In order to improve the convergence rate and efficacy of FOA, two new mechanisms are integrated with the exploratory and exploitative strategies of the original FOA: the outpost mechanism and the multi-population mechanism. The outpost mechanism consists of two parts: greedy selection and Gaussian mutation, which is mainly used to improve the convergence rate of the algorithm. The multi-swarm mechanism divides the population of agents into several sub-swarms and selects several individuals from sub-swarm with a random probability. Then, the selected individuals are remapped into the feature space to expand the exploratory capabilities. To illustrate the performance of the proposed method, a comprehensive set of benchmark functions, including the unimodal, multimodal, and composition functions were chosen for testing tasks. Also, the proposed MOFOA is compared against the state-of-the-art improved FOA algorithms and other well-known swarm-based methods. The experimental results have shown that MOFOA can outperform all the competitors involved in this study in terms of convergence speed and solution quality in a significant manner. Furthermore, MOFOA is also employed to optimize two critical parameters of the support vector machine (SVM) for classification tasks. The results demonstrate that the proposed MOFOA can also achieve a better performance than other swarm-based methods in dealing with the optimization of the SVM in dealing with several financial datasets. (C) 2019 Elsevier Ltd. All rights reserved.
机译:原果蝇算法(FOA)简单的结构易于理解,但它具有缓慢的收敛速度,往往被困在当地的最佳解决方案中。为了提高FOA的收敛速度和功效,两种新机制与原始FOA的探索性和剥削策略集成:前哨机制和多群体机制。前哨机制包括两部分:贪婪选择和高斯突变,主要用于提高算法的收敛速度。多群机制将代理人群划分为几个子群,并使用随机概率选择来自子群的几个。然后,将所选的个体重新映射到特征空间中以扩展探索性功能。为了说明所提出的方法的性能,选择了一系列全面的基准函数,包括单向,多模式和组成功能,用于测试任务。此外,将所提出的MOFOA与最先进的改进的FOA算法和其他众所周知的基于群的方法进行比较。实验结果表明,Mofoa可以以显着的方式在收敛速度和溶液质量方面优于本研究的所有竞争对手。此外,还采用MOFOA来优化支持向量机(SVM)的两个关键参数以进行分类任务。结果表明,所提出的MOFOA还可以实现比其他基于群体的方法更好的性能,以便在处理若干金融数据集时优化SVM。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号