首页> 外文期刊>Expert systems with applications >Efficient methods for mining weighted clickstream patterns
【24h】

Efficient methods for mining weighted clickstream patterns

机译:挖掘加权点击模式的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Pattern mining has been an attractive topic for many researchers since its first introduction. Clickstream mining, a specific version of sequential pattern mining, has been shown to be important in the age of the Internet. However, most previous works have simply exploited and applied existing sequential pattern algorithms to the mining of clickstream patterns, and few have studied clickstreams with weights, which also have a wide range of application. In this paper, we address this problem by proposing an approach based on the average weight measure for clickstream pattern mining and adapting a previous state-of-the-art algorithm to deal with the problem of weighted clickstream pattern mining. Following this, we propose an improved method named Compact-SPADE to enhance both the efficiency and memory consumption. Through various tests on both real-life and synthetic databases, we show that our proposed algorithms outperform state-of-the-art alternatives in terms of efficiency, memory requirements and scalability. (C) 2019 Elsevier Ltd. All rights reserved.
机译:自首次介绍以来,模式挖掘对于许多研究人员来说是一个有吸引力的话题。 Clickstream挖掘,特定版本的顺序模式挖掘,已被证明在互联网时代很重要。但是,最先前的作品已经简单地利用并将现有的连续模式算法应用于拼凑的拼凑而成,很少有少量使用重量的点击流,这也具有广泛的应用。在本文中,我们通过提出基于点击流模式挖掘的平均重量措施的方法来解决这个问题,并调整先前最先进的算法来处理加权点击流模式挖掘问题。在此之后,我们提出了一种名为Compact-Spade的改进方法,以增强效率和存储器消耗。通过对现实生活和合成数据库的各种测试,我们展示了我们所提出的算法在效率,内存要求和可扩展性方面优于最先进的替代方案。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号