首页> 外文期刊>Expert systems with applications >A hybrid energy-Aware virtual machine placement algorithm for cloud environments
【24h】

A hybrid energy-Aware virtual machine placement algorithm for cloud environments

机译:云环境混合能量感知虚拟机放置算法

获取原文
获取原文并翻译 | 示例

摘要

The high energy consumption of cloud data centers presents a significant challenge from both economic and environmental perspectives. Server consolidation using virtualization technology is widely used to reduce the energy consumption rates of data centers. Efficient Virtual Machine Placement (VMP) plays an important role in server consolidation technology. VMP is an NP-hard problem for which optimal solutions are not possible, even for small-scale data centers. In this paper, a hybrid VMP algorithm is proposed based on another proposed improved permutation-based genetic algorithm and multidimensional resource-aware best fit allocation strategy. The proposed VMP algorithm aims to improve the energy consumption rate of cloud data centers through minimizing the number of active servers that host Virtual Machines (VMs). Additionally, the proposed VMP algorithm attempts to achieve balanced usage of the multidimensional resources (CPU, RAM, and Bandwidth) of active servers, which in turn, reduces resource wastage. The performance of both proposed algorithms are validated through intensive experiments. The obtained results show that the proposed improved permutation-based genetic algorithm outperforms several other permutation-based algorithms on two classical problems (the Traveling Salesman Problem and the Flow Shop Scheduling Problem) using various standard datasets. Additionally, this study shows that the proposed hybrid VMP algorithm has promising energy saving and resource wastage performance compared to other heuristics and metaheuristics. Moreover, this study reveals that the proposed VMP algorithm achieves a balanced usage of the multidimensional resources of active servers while others cannot. (C) 2020 Elsevier Ltd. All rights reserved.
机译:云数据中心的高能耗呈现出经济和环境观点的重大挑战。使用虚拟化技术的服务器整合被广泛用于降低数据中心的能耗速率。高效的虚拟机放置(VMP)在服务器整合技术中起重要作用。 VMP是一个NP难题,即使对于小规模的数据中心,也无法实现最佳解决方案。本文基于另一种提出的改进的基于置换遗传算法和多维资源感知最佳拟合分配策略提出了一种混合VMP算法。所提出的VMP算法旨在通过最大限度地减少主机虚拟机(VM)的活动服务器数量来提高云数据中心的能耗速率。此外,所提出的VMP算法试图实现活动服务器的多维资源(CPU,RAM和带宽)的平衡使用,这反过来又降低了资源浪费。通过强化实验验证了两个所提出的算法的性能。所获得的结果表明,所提出的改进的基于置换基遗传算法优于使用各种标准数据集的两个经典问题(旅行推销员问题和流店调度问题的基于其他基于置换的算法。此外,该研究表明,与其他启发式和甲型学相比,所提出的混合VMP算法具有有前途的节能和资源浪费性能。此外,本研究表明,所提出的VMP算法达到了活动服务器的多维资源的平衡使用,而其他VMP算法则无法实现。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号