首页> 外文期刊>Expert systems with applications >Non-numerical nearest neighbor classifiers with value-object hierarchical embedding
【24h】

Non-numerical nearest neighbor classifiers with value-object hierarchical embedding

机译:具有值对象分层嵌入的非数字最近邻分类

获取原文
获取原文并翻译 | 示例

摘要

Non-numerical classification plays an essential role in many real-world applications such as DNA analysis, recommendation systems and expert systems. The nearest neighbor classifier is one of the most popular and flexible models for performing classification tasks in these applications. However, due to the complexity of non-numerical data, existing nearest neighbor classifiers that use the overlap measure and its variants cannot capture the inherent ordered relationship and statistic information of non-numerical data. This phenomenon leads to the classification limitation of nearest neighbor classifiers in non-numerical data environments. To overcome this challenge, we propose a novel object distance metric, i.e., value-object hierarchical metric (VOHM), which is able to capture inherent ordered relationships within non-numerical data. Then, we construct two nearest neighbor classifiers, i.e., the value-object hierarchical embedded nearest neighbor classifier (VO-kNN) and the two-stage value-object hierarchical embedded nearest neighbor classifier (TSVO-kNN), which take advantages of both VOHM and non-numerical feature selection. Experiments show that both VO-kNN and TSVO-kNN could mine more knowledge from data and achieve better performance than state-of-the-art classifiers in non-numerical data environments. (C) 2020 Elsevier Ltd. All rights reserved.
机译:非数字分类在许多现实世界应用中起重要作用,例如DNA分析,推荐系统和专家系统。最近的邻居分类器是用于在这些应用程序中执行分类任务的最受欢迎和灵活的模型之一。然而,由于非数值数据的复杂性,使用重叠度量的现有最近邻分类及其变体不能捕获非数值数据的固有有序关系和统计信息。这种现象导致最近邻分类在非数字数据环境中的分类限制。为了克服这一挑战,我们提出了一种新的对象距离度量,即值 - 对象分层度量(vohm),其能够在非数字数据中捕获固有的有序关系。然后,我们构造两个最近的邻分类器,即值 - 对象分层嵌入式最近的邻分类器(Vo-knn)和两级值 - 对象分层嵌入式最近的邻邻分类器(Tsvo-Knn),这均采用vohm的优点和非数字特征选择。实验表明,VO-KNN和TSVO-KNN都可以从数据中获得更多知识,并在非数字数据环境中的最先进的分类器中实现更好的性能。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Expert systems with applications》 |2020年第7期|113206.1-113206.11|共11页
  • 作者单位

    Shanghai Second Polytech Univ Sch Comp & Informat Shanghai 201209 Peoples R China;

    Tongji Univ Dept Comp Sci & Technol Shanghai 201804 Peoples R China|Tongji Univ Key Lab Embedded Syst & Serv Comp Minist Educ Shanghai 201804 Peoples R China;

    Tongji Univ Dept Comp Sci & Technol Shanghai 201804 Peoples R China|Tongji Univ Key Lab Embedded Syst & Serv Comp Minist Educ Shanghai 201804 Peoples R China;

    Tongji Univ Dept Comp Sci & Technol Shanghai 201804 Peoples R China|Tongji Univ Key Lab Embedded Syst & Serv Comp Minist Educ Shanghai 201804 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Non-numerical classification; Categorical data; Nearest neighbor classifier; Data complexity; Attribute reduction;

    机译:非数值分类;分类数据;最近的邻分类器;数据复杂性;属性减少;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号