首页> 外文期刊>Expert systems with applications >Transform domain representation-driven convolutional neural networks for skin lesion segmentation
【24h】

Transform domain representation-driven convolutional neural networks for skin lesion segmentation

机译:转换域表示驱动的皮肤病变分割的卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Automated diagnosis systems provide a huge improvement in early detection of skin cancer, and consequently, contribute to successful treatment. Recent research on convolutional neural network has achieved enormous success in segmentation and object detection tasks. However, these networks require large amount of data that is a big challenge in medical domain where often have insufficient data and even a pretrained model on medical images can be hardly found. Lesion segmentation as the initial step of skin cancer analysis remains a challenging issue since datasets are small and include a variety of images in terms of light, color, scale, and marks which have led researchers to use extensive augmentation and preprocessing techniques or fine tuning the network with a pretrained model on irrelevant images. A segmentation model based on convolutional neural networks is proposed in this study for the tasks of skin lesion segmentation and dermoscopic feature segmentation. The network is trained from scratch and despite the small size of datasets neither excessive data augmentation nor any preprocessing to remove artifacts or enhance the images are applied. Alternatively, we investigated incorporating image representations of the transform domain to the convolutional neural network and compared to a model with more convolutional layers that resulted in 6% higher Jaccard index and has shorter training time. The model improved by applying CIELAB color space and the performance of the final proposed architecture is evaluated on publicly available datasets from ISBI challenges in 2016 and 2017. The proposed model has resulted in an improvement of as much as 7% for the segmentation metrics and 17% for the feature segmentation, which demonstrates the robustness of this unique hybrid framework and its future applications as well as further improvement. (C) 2019 Elsevier Ltd. All rights reserved.
机译:自动诊断系统在早期检测皮肤癌症的巨大改善,因此有助于成功治疗。最近关于卷积神经网络的研究在分割和对象检测任务中取得了巨大成功。然而,这些网络需要大量数据,这是医学领域的一个大挑战,其中通常没有足够的数据,甚至可以甚至可以甚至可以在医学图像上进行预磨损模型。由于数据集较小,因此缺点皮肤癌症分析的初始步骤仍然是一个具有挑战性的问题,并且在光明,颜色,规模和标记方面包括各种图像,这些图像具有领导的研究人员使用广泛的增强和预处理技术或微调网络与无关图像上的预磨模模型。本研究提出了一种基于卷积神经网络的分割模型,用于皮肤病病变分割和Dermoscopic特征分割的任务。从头开始培训网络,尽管数据集的尺寸小,但既没有过度数据增强,也没有任何预处理以删除伪影或增强图像。或者,我们研究了将变换域的图像表示纳入卷积神经网络,并与具有更多卷积层的模型相比,导致6%的Jaccard指标具有6%并且具有更短的训练时间。通过应用CIELAB颜色空间和最终拟议架构的性能改善的模型在2016年和2017年的ISBI挑战中评估了来自ISBI挑战的公开可用数据集。拟议的模型导致分割指标和17的分割度量增加了7%特征分割的百分比,它展示了这种独特的混合框架及其未来应用以及进一步改进的鲁棒性。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号