首页> 外文期刊>Expert systems with applications >Intelligent traffic control for autonomous vehicle systems based on machine learning
【24h】

Intelligent traffic control for autonomous vehicle systems based on machine learning

机译:基于机器学习的自主车辆系统智能流量控制

获取原文
获取原文并翻译 | 示例

摘要

This study aimed to resolve a real-world traffic problem in a large-scale plant. Autonomous vehicle systems (AVSs), which are designed to use multiple vehicles to transfer materials, are widely used to transfer wafers in semiconductor manufacturing. Traffic control is a significant challenge with AVSs because all vehicles must be monitored and controlled in real time, to cope with uncertainties such as congestion. However, existing traffic control systems, which are primarily designed and controlled by human experts, are insufficient to prevent heavy congestion that impedes production. In this study, we developed a traffic control system based on machine learning predictions, and a routing method that dynamically determines AVS routes with reduced congestion rates. We predicted congestion for critical bottleneck areas, and utilized the predictions for adaptive routing control of all vehicles to avoid congestion. We conducted an experimental evaluation to compare the predictive performance of four popular algorithms. We performed a simulation study based on data from semiconductor fabrication to demonstrate the utility and superiority of the proposed method. The experimental results showed that AVSs with the proposed approach outperformed the existing approach in terms of delivery time, transfer time, and queuing time. We found that adopting machine learning-based traffic control can enhance the performance of existing AVSs and reduce the burden on the human experts who monitor and control AVSs. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本研究旨在解决大型工厂中的真实交通问题。设计用于使用多个车辆传输材料的自主车辆系统(AVSS)被广泛用于在半导体制造中传递晶片。交通管制是AVSS的重大挑战,因为所有车辆必须实时监控和控制,以应对诸如拥塞等不确定性。然而,主要由人类专家设计和控制的现有交通管制系统不足以防止阻碍生产的严重拥堵。在这项研究中,我们开发了一种基于机器学习预测的流量控制系统,以及动态地确定具有降低的拥塞率的AVS路由的路由方法。我们预测了关键瓶颈区域的拥塞,并利用了对所有车辆的自适应路由控制的预测以避免拥堵。我们进行了一个实验评估,以比较四种流行算法的预测性能。我们基于来自半导体制造的数据进行了仿真研究,以证明所提出的方法的实用性和优越性。实验结果表明,具有所提出的方法的AVSS在交货时间,转移时间和排队时间方面表现出现有的方法。我们发现采用基于机器的机器的流量控制可以增强现有AVSS的性能,并减少监控和控制AVSS的人类专家的负担。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号