首页> 外文期刊>Expert systems with applications >Fuzzy rule based unsupervised sentiment analysis from social media posts
【24h】

Fuzzy rule based unsupervised sentiment analysis from social media posts

机译:基于模糊规则的社交媒体帖子的无监督情绪分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we compute the sentiment of social media posts using a novel set of fuzzy rules involving multiple lexicons and datasets. The proposed fuzzy system integrates Natural Language Processing techniques and Word Sense Disambiguation using a novel unsupervised nine fuzzy rule based system to classify the post into: positive, negative or neutral sentiment class. We perform a comparative analysis of our method on nine public twitter datasets, three sentiment lexicons, four state-of-the-art approaches for unsupervised Sentiment Analysis and one state-of-the-art method for supervised machine learning. Traditionally, Sentiment Analysis of twitter data is performed using a single lexicon. Our results can give an insight to researchers to choose which lexicon is best for social media. The fusion of fuzzy logic with lexicons for sentiment classification provides a new paradigm in Sentiment Analysis. Our method can be adapted to any lexicon and any dataset (two-class or three-class sentiment). The experiments on benchmark datasets yield higher performance for our approach as compared to the state-of-the-art. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在本文中,我们使用涉及多个词典和数据集的小说模糊规则来计算社交媒体帖子的情绪。所提出的模糊系统使用基于新型无监督的九个模糊规则的系统将自然语言处理技术和词语感歧法集成在一起,将帖子分类为:正,负或中性情绪类。我们对我们在九个公共推特数据集的方法进行比较分析,三种情绪词典,四种最先进的情绪分析方法以及用于监督机器学习的一种最新方法。传统上,使用单个词典执行Twitter数据的情感分析。我们的结果可以介绍研究人员选择哪个词典最适合社交媒体。具有情绪分类的混合逻辑与词士的融合为情感分析提供了一种新的范例。我们的方法可以适用于任何lexicon和任何数据集(两班或三类情绪)。基准数据集的实验与现有技术相比,对我们的方法产生了更高的性能。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号