首页> 外文期刊>Expert systems with applications >A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking
【24h】

A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking

机译:一种遗传转换和超大矩形搜索策略的杂交,用于进化多任务

获取原文
获取原文并翻译 | 示例

摘要

Recently, evolutionary multi-tasking (EMT) has surfaced as a new search paradigm in the field of evolutionary computation to solve two or more tasks simultaneously. EMT algorithms accelerate the convergence of multiple optimization tasks by sharing useful knowledge among tasks, i.e., knowledge transfer is the key to the success of EMT algorithms. However, as the evolutionary search proceeds, the learnability of one task to others might decrease and the knowledge transfer becomes less efficient. To address this issue, this paper proposes a novel multi-factorial evolutionary algorithm by hybridizing two complementary strategies, namely genetic transform strategy and hyper-rectangle search strategy (MFEA-GHS). The proposed genetic transform strategy is applied in individual reproduction and aims to strengthen the knowledge transfer efficiency. Particularly, if two parent individuals are specific to different tasks, one parent individual is transformed to fit the other task by task space mapping. As such, higher-quality offspring individuals towards a target task can be generated with the transformed individual. The hyper-rectangle search strategy based on opposition learning is designed to perform efficient exploration and exploitation in both the unified search space and the sub-space of each task, which enables the population to search more unexplored regions. Comprehensive experiments are carried out on both single-and multi-objective EMT optimization problems. The experimental results demonstrate the efficiency of MFEA-GHS and the two proposed strategies. (C) 2019 Elsevier Ltd. All rights reserved.
机译:最近,进化的多任务(EMT)在进化计算领域中被浮出水面,以便同时解决两个或更多个任务。 EMT算法通过在任务中共享有用的知识来加速多优化任务的融合,即,知识传输是EMT算法成功的关键。然而,随着进化搜索所需的,对他人的一个任务的可读性可能会降低,并且知识转移变得越来越高。为了解决这个问题,本文通过杂交两种互补策略,即遗传转换策略和超大矩形搜索策略(MFEA-GHS)提出了一种新的多因素进化算法。拟议的遗传转换策略适用于个人繁殖,旨在加强知识转移效率。特别是,如果两个父片特定于不同的任务,则转换一个父片以通过任务空间映射拟合其他任务。因此,可以使用变换的个体生成朝向目标任务的更高质量的后代个体。基于反对派学习的超大矩形搜索策略旨在在统一的搜索空间和每个任务的子空间中进行有效的探索和开发,这使得人口能够搜索更未开发的区域。对单一和多目标EMT优化问题进行综合实验。实验结果表明了MFEA-GHS和两种拟议策略的效率。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号