首页> 外文期刊>Expert systems with applications >Transportation problems for intermodal networks: Mathematical models, exact and heuristic algorithms, and machine learning
【24h】

Transportation problems for intermodal networks: Mathematical models, exact and heuristic algorithms, and machine learning

机译:多式联网运输问题:数学模型,精确和启发式算法和机器学习

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a combinatorial problem called a pick-up routing problem with a three-dimensional (3D-PRP) loading constraint, clustered backhauls at the operational level, and train loading at the tactical level for an intermodal transportation network. A two-phase approach, called clustering first, packing-routing second, is proposed for use during the first stage. The clustering of backhauls is carried out using the k-means algorithm. A hybrid approach is provided, which combines the packing of orders by first solving a 3D loading problem for each cluster using machine learning with a best-fit-first strategy, with routing using a genetic algorithm. During the second stage, the train-loading problem is solved using a mixed integer programming approach to minimise the total costs by incorporating various cost types, in which detention and demurrage costs are taken into account. All solution approaches are computationally evaluated on real-world data provided by an international logistics firm and new randomly generated instances. Comparisons are carried out using both exact solution methods and heuristic approaches, and the proposed approach was shown to be more effective for real-world problems. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文介绍了一种组合问题,称为拾取路由问题,其具有三维(3D-PRP)负载约束,在运行级别的群集后脉冲,以及在代域的策略水平进行训练。提出了一种称为聚类的两相方法,填充路由第二,用于在第一阶段使用。使用K-Means算法进行后脉冲的聚类。提供了一种混合方法,其通过首先使用具有最佳拟合第一策略的机器学习来首先解决每个群集的3D加载问题来组合订单的包装。使用遗传算法路由。在第二阶段,使用混合整数编程方法解决了火车装载问题,以通过加入各种成本类型来最小化总成本,其中考虑到拘留和滞期成本。所有解决方案方法都在计算上由国际物流公司和新的随机生成的实例提供的现实数据进行评估。使用精确的解决方案方法和启发式方法进行比较,并且所提出的方法被证明对现实世界的问题更有效。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号