首页> 外文期刊>Expert systems with applications >A novel character segmentation-reconstruction approach for license plate recognition
【24h】

A novel character segmentation-reconstruction approach for license plate recognition

机译:一种新的车牌识别性格分割 - 重构方法

获取原文
获取原文并翻译 | 示例

摘要

Developing an automatic license plate recognition system that can cope with multiple factors is challenging and interesting in the current scenario. In this paper, we introduce a new concept called partial character reconstruction to segment characters of license plates to enhance the performance of license plate recognition systems. Partial character reconstruction is proposed based on the characteristics of stroke width in the Laplacian and gradient domain in a novel way. This results in character components with incomplete shapes. The angular information of character components determined by PCA and the major axis are then studied by considering regular spacing between characters and aspect ratios of character components in a new way for segmenting characters. Next, the same stroke width properties are used for reconstructing the complete shape of each character in the gray domain rather than in the gradient domain, which helps in improving the recognition rate. Experimental results on benchmark license plate databases, namely, MIMOS, Medialab, UCSD data, Uninsbria data Challenged data, as well as video databases, namely, ICDAR 2015, YVT video, and natural scene data, namely, ICDAR 2013, ICDAR 2015, SVT, MSRA, show that the proposed technique is effective and useful. (C) 2019 Elsevier Ltd. All rights reserved.
机译:开发一种可以应对多种因素的自动牌照识别系统是在当前情景中具有挑战性和有趣的。在本文中,我们介绍了一个新的概念,称为部分字符重建,以提高车牌识别系统的性能。基于Laplacian和梯度域中的行程宽度以新颖的方式提出局部字符重建。这导致具有不完整形状的字符组件。然后,通过考虑字符组件的字符和宽高比以用于分割字符的新方法来研究由PCA和主轴确定的字符组分的角度信息。接下来,相同的笔划宽度属性用于重建灰色域中的每个字符的完整形状,而不是在梯度域中有助于提高识别率。基准车牌数据库的实验结果,即MIMOS,MEMIALAB,UCSD数据,UNICABRIA数据挑战数据,以及视频数据库,即ICDAR 2015,YVT视频和自然场景数据,即ICDAR 2013,ICDAR 2015,SVT ,MSRA,表明所提出的技术是有效和有用的。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号