首页> 外文期刊>Expert systems with applications >An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification
【24h】

An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification

机译:一种可解释的深层分层语义卷积神经网络,用于肺结节恶性分类

获取原文
获取原文并翻译 | 示例

摘要

While deep learning methods have demonstrated performance comparable to human readers in tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability hinders them from being fully understood by end users such as radiologists. In this paper, we present a novel interpretable deep hierarchical semantic convolutional neural network (HSCNN) to predict whether a given pulmonary nodule observed on a computed tomography (CT) scan is malignant. Our network provides two levels of output: 1) low-level semantic features; and 2) a high-level prediction of nodule malignancy. The low-level outputs reflect diagnostic features often reported by radiologists and serve to explain how the model interprets the images in an expert-interpretable manner. The information from these low-level outputs, along with the representations learned by the convolutional layers, are then combined and used to infer the high-level output. This unified architecture is trained by optimizing a global loss function including both low- and high-level tasks, thereby learning all the parameters within a joint framework. Our experimental results using the Lung Image Database Consortium (LIDC) show that the proposed method not only produces interpretable lung cancer predictions but also achieves better results compared to using a 3D CNN alone. (C) 2019 Elsevier Ltd. All rights reserved.
机译:虽然深入学习方法已经表现出与计算机辅助诊断等任务中的人类读者相当的性能,但这些模型难以解释,不纳入现有领域知识,并且通常被认为是“黑匣子”。缺乏模型解释性阻碍了他们通过最终用户(如放射科医师)完全理解。在本文中,我们提出了一种新的可解释的深层次语义卷积神经网络(HSCNN),以预测在计算机断层扫描(CT)扫描上观察到的给定肺结核是恶性的。我们的网络提供了两个输出级别:1)低级语义特征; 2)对结节恶性肿瘤的高水平预测。低级输出反映了放射科医师通常报告的诊断功能,并用于解释模型如何以专家可解释的方式解释图像。然后将来自这些低级输出的信息以及卷积层学到的表示,并用于推断高电平输出。通过优化包括低级和高级任务的全局丢失功能,通过优化包括低级和高级任务的统一架构进行培训,从而在联合框架内学习所有参数。我们使用肺部图像数据库联盟(LIDC)的实验结果表明,与单独使用3D CNN相比,所提出的方法不仅产生可解释的肺癌预测,还可以实现更好的结果。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号