首页> 外文期刊>Expert systems with applications >A game-predicting expert system using big data and machine learning
【24h】

A game-predicting expert system using big data and machine learning

机译:一种使用大数据和机器学习的游戏预测专家系统

获取原文
获取原文并翻译 | 示例

摘要

The National Hockey League (NHL) is a major North American sports organization that earns $3.3 billion in annual revenue, and its stakeholders-team management, advertisers, sports analysts, fans, among others-have vested interest in league competitiveness and team performance. Utilizing player and team data collected from various web sources, we propose an expert system to better predict NHL game outcomes as well as improve recruiting and salary decisions. The system combines principal components analysis, nonparametric statistical analysis, a support vector machine (SVM), and an ensemble machine learning algorithm to predict whether a hockey team will win a game. The ensemble methods improve upon the reference SVM classifier, and the ensemble models' predictive accuracy for the testing set exceeds 90%. The comparison of several ensemble machine learning approaches specifies opportunities to improve the accuracy of game outcome prediction. The system makes it simple for users to employ the learning methodologies and input data sources, evaluate model results, and address the challenges and concerns inherent in predicting hockey game wins. (C) 2019 Elsevier Ltd. All rights reserved.
机译:国家曲棍球联赛(NHL)是一家主要的北美体育组织,占年收入33亿美元,其利益攸关方 - 团队管理,广告商,体育分析师,粉丝等 - 对联盟竞争力和团队表现有既得利益。利用从各种网络来源收集的玩家和团队数据,我们提出了一个专家系统,以更好地预测NHL游戏结果以及改善招聘和薪酬决策。该系统结合了主成分分析,非参数统计分析,支持向量机(SVM),以及集合机器学习算法预测曲棍球团队是否会赢得游戏。合奏方法改进了参考SVM分类器,测试集的集合模型的预测精度超过90%。几种集合机学习方法的比较规定了提高游戏结果预测准确性的机会。该系统使用户简单地使用学习方法和输入数据源,评估模型结果,并解决预测曲棍球游戏赢取中固有的挑战和担忧。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号