首页> 外文期刊>Expert systems with applications >A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network
【24h】

A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network

机译:基于模糊C型和自适应神经网络的组合的车道变化的分层预测模型

获取原文
获取原文并翻译 | 示例

摘要

Lane changing behavior generally expresses uncertainty due to the impact of environmental factors, and unreasonable lane changes can cause serious collisions. High precision prediction of lane changing intent is helpful to enhance proactivity in driving safety protection. This study proposed a lane-changing prediction model based on Fuzzy C-means clustering algorithm and adaptive Neural Network (FCMNN), which introduced a new prediction process: (1) Unsupervised learning method: categorize original dataset into different clusters according to their distribution features; (2) Supervised learning method: optimize sub Neural Network structures and weighting parameters for each cluster or pattern. Through comparing with several traditional methods under different simulation scenarios, the proposed model effectively improve the prediction performance and stability. The results obtained in this study will be helpful to deeply analyze the intent recognition of driving behavior, improve the safety of lane-changing behavior, and provide key technology in driving prediction of Advanced Driver Assistance System (ADAS). (C) 2019 Elsevier Ltd. All rights reserved.
机译:由于环境因素的影响,车道改变行为通常表达不确定性,并且不合理的车道变化会导致严重的碰撞。通道的高精度预测有助于提高驾驶安全保护的疗程。本研究提出了一种基于模糊C型聚类算法和自适应神经网络(FCMNN)的车道改变预测模型,其引入了一种新的预测过程:(1)无监督学习方法:根据其分发功能将原始数据集分类为不同的集群; (2)监督学习方法:优化每个群集或图案的子神经网络结构和加权参数。通过与不同仿真场景下的几种传统方法进行比较,所提出的模型有效地提高了预测性能和稳定性。本研究中获得的结果将有助于深入分析对驾驶行为的意图识别,提高车道改变行为的安全性,并提供了推动先进驾驶员辅助系统(ADA)的关键技术。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert systems with applications》 |2019年第9期|265-275|共11页
  • 作者单位

    Cent S Univ Sch Traff & Transportat Engn Smart Transport Key Lab Hunan Prov Changsha 410075 Hunan Peoples R China;

    Changan Univ Minist Educ China Mobile Commun Corp Joint Lab Internet Vehicles Xian 710064 Shaanxi Peoples R China;

    Changsha Univ Sci & Technol Sch Transportat Engn Changsha 410205 Hunan Peoples R China;

    Shanghai Maritime Univ Inst Logist Sci & Engn Shanghai 2013066 Peoples R China;

    Cent S Univ Sch Traff & Transportat Engn Smart Transport Key Lab Hunan Prov Changsha 410075 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lane changes; Fuzzy C-means algorithm; Neural network; Driving simulation; Driving prediction;

    机译:车道变化;模糊C型算法;神经网络;驾驶仿真;驾驶预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号