首页> 外文期刊>Expert systems with applications >A multi-objective evolutionary approach for fuzzy regression analysis
【24h】

A multi-objective evolutionary approach for fuzzy regression analysis

机译:模糊回归分析的多目标进化方法

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy regression analysis was extensively used in previous studies to model the relationships between dependent and independent variables in a fuzzy environment. Various approaches have been proposed to perform fuzzy regression analysis with most of the approaches adopting a single objective function in the generation of fuzzy regression models. Some previous studies attempted to generate fuzzy regression models using a multi-objective optimization approach in order to improve the prediction accuracy of the generated fuzzy regression models. However, in the studies, the subjective judgments of parameter settings are required for solving multi-objective optimization problems and a complete representation of Parato optimal solutions cannot be generated in a single run. To address the limitations, a multi-objective evolutionary approach to fuzzy regression analysis is proposed in this paper. In the proposed approach, a multi-objective optimization problem is formulated which involves three objectives; minimizing the fuzziness of fuzzy outputs, minimizing the effect of outliers and minimizing the mean absolute percentage error of modeling. A non-dominated sorting genetic algorithm-alpha is introduced to solve the problem and generate a set of Pareto optimal solutions. Finally, a technique for order of preference by similarity to ideal solution is applied to determine a final optimal solution by which a fuzzy regression model can be generated. A case study is conducted to illustrate the proposed approach. Sixteen validation tests are conducted to evaluate the effectiveness of the proposed approach. The results of the validation tests show that the proposed approach outperforms Tanaka's fuzzy regression, Peters' fuzzy regression, compromise programming based multi-objective fuzzy regression, fuzzy least-squares regression and probabilistic fuzzy regression approaches in terms of training errors and prediction accuracy. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在先前的研究中广泛使用模糊回归分析,以模拟模糊环境中受所属变量与独立变量之间的关系。已经提出了各种方法来对模糊回归分析进行模糊回归分析,其中大多数方法采用在模糊回归模型的产生中采用单一目标函数。一些先前的研究试图使用多目标优化方法产生模糊回归模型,以提高所产生的模糊回归模型的预测精度。然而,在研究中,参数设置的主观判断是解决多目标优化问题所必需的,并且无法在单个运行中生成Parato最佳解决方案的完整表示。为了解决限制,本文提出了一种多目标进化方法来模糊回归分析。在提出的方法中,制定了多目标优化问题,涉及三个目标;最小化模糊输出的模糊性,最大限度地减少异常值的效果,最大限度地减少模型的平均绝对百分比误差。引入了非主导的分类遗传算法-Alpha以解决问题并生成一组Pareto最佳解决方案。最后,应用了通过与理想解决方案的相似性偏好的优先顺序的技术来确定可以生成模糊回归模型的最终最佳解决方案。进行案例研究以说明所提出的方法。进行了十六个验证测试,以评估所提出的方法的有效性。验证测试的结果表明,拟议的方法优于Tanaka的模糊回归,Peters的模糊回归,折衷基于编程的多目标模糊回归,模糊最小二乘回归和概率模糊回归和概率模糊回归在训练误差和预测准确性方面的方法。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号