首页> 外文期刊>Expert Systems with Application >An artificial immune systems approach to Case-based Reasoning applied to fault detection and diagnosis
【24h】

An artificial immune systems approach to Case-based Reasoning applied to fault detection and diagnosis

机译:基于案例推理的人工免疫系统方法在故障检测与诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

This work presents a hybrid model of Case-based Reasoning (CBR) and artificial immune systems (AIS), which is able to manage the processes of recovery, adaptation (reuse and revision) and retention of cases. The developed model also provides an alternative way of clustering cases, identifying high density areas, improve search efficiency in the case space and store relationships among similar cases. The proposed model is applied to a fault detection and diagnosis problem of direct currnet motor nenchmark and the obtained results are compared using specific CBR performance metrics showing promising perspectives for the proposed model. (C) 2019 Elsevier Ltd. All rights reserved.
机译:这项工作提出了基于案例的推理(CBR)和人工免疫系统(AIS)的混合模型,该模型能够管理案例的恢复,适应(重用和修订)和保留的过程。开发的模型还提供了一种对案例进行聚类,识别高密度区域,提高案例空间中的搜索效率以及存储相似案例之间的关系的替代方法。将该模型应用于直流电机的故障检测和诊断问题,并使用特定的CBR性能指标对获得的结果进行比较,显示了该模型的前景。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号