首页> 外文期刊>Expert Systems with Application >SoTaRePo: Society-Tag Relationship Protocol based architecture for UIP construction
【24h】

SoTaRePo: Society-Tag Relationship Protocol based architecture for UIP construction

机译:SoTaRePo:用于UIP构建的基于社会标签关系协议的体系结构

获取原文
获取原文并翻译 | 示例

摘要

As with the advancement of web services, there has been a rapid proliferation in web size and number of web users, where, each user holds a different viewpoint towards the same information. This, in turn, has become a big challenge for the web search platforms to interpret the preferences of the users and provide the desired information to them. The most suitable solution to the problem of search platforms is personalization of web search. A personalization system is a kind of expert and intelligent system which can automatically learn about the preferences of a user so that the system can provide the search results as per their relevance to a user. The process of acquiring knowledge about user's preferences by a personalization system is known as User Interest Profile (UIP). In the field of search personalization, it can also not be denied that only an efficient and complete UIP can lead to an effective and high performing web search personalization methodology design. But most of the studies conducted for web search personalization have only focused on UIP modeling without any thought about the quality of UIP. Rather limited attention has been paid to sparsity issue of UIP modeling. In this paper, we propose a novel protocol based architecture model to create an efficient UIP by exploiting direct and indirect interest of a user. Direct interest aims at mining user's preferences from his own activities on a social information platform. The explicitly defined society and real-world activity relationships of a user on a social platform are used to predict his indirect interest as UIP constructed solely on the basis of direct interest is sparse and ineffective. In order to unearth user's activity relationships the concept of semantic relatedness, computed using Word2vec model, has been used. Moreover, different trust levels in society relationships have also been incorporated into the proposed model to facilitate the prediction of user's indirect interest. A series of experiments have been conducted on a del.icio.us dataset to evaluate the effectiveness of the proposed model. The results show that the model has outperformed each and every baseline in relation to complete and efficient UIP construction. (C) 2019 Published by Elsevier Ltd.
机译:随着Web服务的发展,Web规模和Web用户数量迅速增加,其中每个用户对相同信息持不同观点。反过来,这对于网络搜索平台来说,要解释用户的偏好并向他们提供所需的信息,已经成为一个很大的挑战。搜索平台问题的最合适解决方案是Web搜索的个性化。个性化系统是一种专家和智能系统,可以自动了解用户的偏好,以便该系统可以根据搜索结果与用户的相关性提供搜索结果。通过个性化系统获取有关用户偏好的知识的过程称为用户兴趣配置文件(UIP)。在搜索个性化领域,也不能否认,只有有效而完整的UIP才能导致有效和高性能的Web搜索个性化方法设计。但是,大多数针对Web搜索个性化的研究仅集中在UIP建模上,而没有考虑UIP的质量。很少有人对UIP建模的稀疏性关注。在本文中,我们提出了一种新颖的基于协议的体系结构模型,以通过利用用户的直接和间接兴趣来创建有效的UIP。直接兴趣旨在从用户在社交信息平台上的活动中挖掘用户的偏好。由于仅基于直接兴趣构建的UIP稀疏且无效,因此使用社交平台上用户明确定义的社会和现实活动关系来预测其间接兴趣。为了挖掘用户的活动关系,已使用使用Word2vec模型计算的语义相关性概念。此外,社会关系中的不同信任级别也已被纳入所提出的模型中,以促进对用户的间接兴趣的预测。已经在del.icio.us数据集上进行了一系列实验,以评估所提出模型的有效性。结果表明,相对于完整而有效的UIP构建,该模型的性能优于每个基线。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号