首页> 外文期刊>Expert Systems with Application >Data-driven construction of SPARQL queries by approximate question graph alignment in question answering over knowledge graphs
【24h】

Data-driven construction of SPARQL queries by approximate question graph alignment in question answering over knowledge graphs

机译:在知识图的问题解答中,通过近似问题图对齐来以数据驱动的方式构建SPARQL查询

获取原文
获取原文并翻译 | 示例

摘要

As increasingly more semantic real-world data is stored in knowledge graphs, providing intuitive and effective query methods for end-users is a fundamental and challenging task. Since there is a gap between the plain natural language question (NLQ) and structured data, most RDF question/answering (QJA) systems construct SPARQL queries from NLQs and obtain precise answers from knowledge graphs. A major challenge is how to disambiguate the mapping of phrases and relations in a question to the dataset items, especially in complex questions. In this paper, we propose a novel data-driven graph similarity framework for RDF Q/A to extract the query graph patterns directly from the knowledge graph instead of constructing them with semantically mapped items. An uncertain question graph is presented to model the interpretations of an NLQ based on which our problem is reduced to a graph alignment problem. In formulating the alignment, both the lexical and structural similarity of graphs are considered, hence, the target RDF subgraph is used as a query graph pattern to construct the final query. We create a pruned entity graph dynamically based on the complexity of an input question to reduce the search space on the knowledge graph. Moreover, to reduce the calculating cost of the graph similarity, we compute the similarity scores only for same-distance graph elements and equip the process with an edge association aware surface form extraction method. Empirical studies over real datasets indicate that our proposed approach is flexible and effective as it outperforms state-of-the-art methods significantly. (C) 2020 Elsevier Ltd. All rights reserved.
机译:随着越来越多的语义现实世界数据存储在知识图中,为最终用户提供直观有效的查询方法是一项基本且具有挑战性的任务。由于普通自然语言问题(NLQ)与结构化数据之间存在差距,因此大多数RDF问题/回答(QJA)系统都从NLQ构造SPARQL查询,并从知识图中获得精确的答案。一个主要的挑战是如何使一个问题中的短语和关系到数据集项目的歧义消除,尤其是在复杂问题中。在本文中,我们为RDF Q / A提出了一种新的数据驱动的图相似框架,该框架可直接从知识图中提取查询图模式,而不是使用语义映射的项构造它们。提出了一个不确定的问题图以对NLQ的解释进行建模,基于该问题我们的问题被简化为图对齐问题。在制定对齐方式时,考虑了图的词汇和结构相似性,因此,将目标RDF子图用作查询图模式以构建最终查询。我们根据输入问题的复杂性动态创建修剪的实体图,以减少知识图上的搜索空间。此外,为了减少图形相似度的计算成本,我们仅计算等距离图形元素的相似度分数,并为该过程配备边缘关联感知表面形式提取方法。对真实数据集的实证研究表明,我们提出的方法灵活,有效,因为它明显优于最新方法。 (C)2020 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号