首页> 外文期刊>Expert Systems with Application >Feature analysis of encrypted malicious traffic
【24h】

Feature analysis of encrypted malicious traffic

机译:加密恶意流量的特征分析

获取原文
获取原文并翻译 | 示例

摘要

In recent years there has been a dramatic increase in the number of malware attacks that use encrypted HTTP traffic for self-propagation or communication. Antivirus software and firewalls typically will not have access to encryption keys, and therefore direct detection of malicious encrypted data is unlikely to succeed. However, previous work has shown that traffic analysis can provide indications of malicious intent, even in cases where the underlying data remains encrypted. In this paper, we apply three machine learning techniques to the problem of distinguishing malicious encrypted HTTP traffic from benign encrypted traffic and obtain results comparable to previous work. We then consider the problem of feature analysis in some detail. Previous work has often relied on human expertise to determine the most useful and informative features in this problem domain. We demonstrate that such feature-related information can be obtained directly from machine learning models themselves. We argue that such a machine learning based approach to feature analysis is preferable, as it is more reliable, and we can, for example, uncover relatively unintuitive interactions between features. (C) 2019 Elsevier Ltd. All rights reserved.
机译:近年来,使用加密的HTTP流量进行自我传播或通信的恶意软件攻击数量急剧增加。防病毒软件和防火墙通常无法访问加密密钥,因此直接检测恶意加密数据不太可能成功。但是,先前的工作表明,即使在基础数据保持加密的情况下,流量分析也可以提供恶意意图的指示。在本文中,我们将三种机器学习技术应用于区分恶意加密HTTP流量和良性加密流量的问题,并获得与以前的工作相当的结果。然后,我们将更详细地考虑特征分析问题。以前的工作通常依赖于人类的专业知识来确定此问题领域中最有用和最有用的功能。我们证明了可以直接从机器学习模型本身获取与功能相关的信息。我们认为,这种基于机器学习的特征分析方法是更可取的,因为它更可靠,例如,我们可以发现特征之间相对不直观的交互。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号