首页> 外文期刊>Expert Systems with Application >Clustering of interval-valued time series of unequal length based on improved dynamic time warping
【24h】

Clustering of interval-valued time series of unequal length based on improved dynamic time warping

机译:基于改进的动态时间规整的不等长区间值时间序列聚类

获取原文
获取原文并翻译 | 示例

摘要

Clustering of a group of interval-valued time series of unequal length is often encountered and the key point of this clustering is the distance measure between two interval-valued time series. However, most distance measure methods apply to interval-valued time series of equal length, and another methods applicable to unequal-length ones usually show high computational cost. In order to give a reasonable and efficient distance measure, this paper first proposes a new representation in the form of a sequence of 3-tuples for interval-valued time series. In this representation, fully take into account the time-axis and value-axis information to decrease the loss of information. Meanwhile, this representation is guaranteed to achieve dimensionality reduction. Based on the new representation, dynamic time warping algorithm is then employed and an improved dynamic time warping algorithm is produced. Furthermore, a hierarchical clustering algorithm based on the new proposed distance measure is designed for interval-valued time series of equal or unequal length. Experimental results show the effectiveness of the proposed distance and quantify the performance of the designed clustering method. (C) 2019 Published by Elsevier Ltd.
机译:通常会遇到一组长度不等的间隔值时间序列的聚类,并且此聚类的关键点是两个间隔值时间序列之间的距离度量。但是,大多数距离测量方法都适用于等长的间隔值时间序列,而另一种适用于不等长的时间间隔方法通常显示较高的计算成本。为了给出合理而有效的距离度量,本文首先提出了一种以三元组序列形式表示区间值时间序列的新表示形式。在此表示中,请充分考虑时间轴和值轴信息,以减少信息丢失。同时,保证该表示实现降维。基于新的表示,然后采用动态时间规整算法,并产生了一种改进的动态时间规整算法。此外,针对长度相等或不相等的间隔值时间序列,设计了一种基于新提出的距离测度的分层聚类算法。实验结果证明了所提出距离的有效性,并量化了所设计聚类方法的性能。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号