首页> 外文期刊>Expert Systems with Application >CNNpred: CNN-based stock market prediction using a diverse set of variables
【24h】

CNNpred: CNN-based stock market prediction using a diverse set of variables

机译:CNNpred:使用多种变量的基于CNN的股票市场预测

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction from financial data is one of the most important problems in market prediction domain for which many approaches have been suggested. Among other modern tools, convolutional neural networks (CNN) have recently been applied for automatic feature selection and market prediction. However, in experiments reported so far, less attention has been paid to the correlation among different markets as a possible source of information for extracting features. In this paper, we suggest a CNN-based framework, that can be applied on a collection of data from a variety of sources, including different markets, in order to extract features for predicting the future of those markets. The suggested framework has been applied for predicting the next day's direction of movement for the indices of S&P 500, NAS-DAQ DAQ, DJI, NYSE, and RUSSELL based on various sets of initial variables. The evaluations show a significant improvement in prediction's performance compared to the state of the art baseline algorithms. (C) 2019 Elsevier Ltd. All rights reserved.
机译:从金融数据中提取特征是市场预测领域中最重要的问题之一,为此提出了许多方法。在其他现代工具中,卷积神经网络(CNN)最近已用于自动特征选择和市场预测。然而,在迄今为止报道的实验中,作为提取特征的可能信息源,人们对不同市场之间的相关性的关注较少。在本文中,我们建议使用基于CNN的框架,该框架可应用于来自各种来源(包括不同市场)的数据收集,以提取用于预测这些市场未来的特征。建议的框架已用于基于各种初始变量集来预测S&P 500,NAS-DAQ DAQ,DJI,NYSE和RUSSELL指数的第二天走势。与最先进的基线算法相比,这些评估显示出预测性能的显着改善。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号