首页> 外文期刊>Expert Systems with Application >Face image manipulation detection based on a convolutional neural network
【24h】

Face image manipulation detection based on a convolutional neural network

机译:基于卷积神经网络的人脸图像操纵检测

获取原文
获取原文并翻译 | 示例

摘要

Facial image manipulation is a particular instance of digital image tampering, which is done by corn positing a region from one facial image into another facial image. Fake images generated by facial image manipulation now spread like wildfire on news websites and social networks, and are considered the greatest threat to press freedom. Previous research relied heavily on handcrafted features to analyze tampered regions which were inefficient and time-consuming. This paper introduces a framework that accurately detects manipulated face image using deep learning approach. The original contributions of this paper include (1) a customized convolutional neural network model for Manipulated Face (MANFA) identification; it contains several convolutional layers that effectively extract features of multi-levels of abstraction from a tampered region. (2) A hybrid framework (HF-MANFA) that uses Adaptive Boosting (AdaBoost) and eXtreme Gradient Boosting (XGBoost) to deal with the imbalanced dataset challenge. (3) A large manipulated face dataset that is manually collected and validated. The results from various experiments proved that proposed models outperformed existing expert and intelligent systems which were usually used for the manipulated face image detection task in terms of area under the curve (AUC), computational complexity, and robustness against imbalanced datasets. As a result, the presented framework will motivate the finding of a more powerful altered face images detection method and encourages the integration of the proposed model in applications that have to deal with manipulated images regularly. (C) 2019 Elsevier Ltd. All rights reserved.
机译:面部图像操纵是数字图像篡改的特定实例,这是通过将玉米从一个面部图像放置到另一个面部图像中来完成的。现在,通过面部图像处理生成的伪造图像像野火一样在新闻网站和社交网络上传播,被认为是新闻自由的最大威胁。先前的研究严重依赖手工制作的功能来分析低效且耗时的篡改区域。本文介绍了一种使用深度学习方法准确检测人脸图像的框架。本文的主要贡献包括:(1)定制的卷积神经网络模型,用于人脸识别(MANFA);它包含几个卷积层,可以有效地从篡改区域提取多层次抽象特征。 (2)一种混合框架(HF-MANFA),它使用自适应增强(AdaBoost)和极限梯度增强(XGBoost)来处理不平衡的数据集挑战。 (3)手动收集和验证的大型操作面部数据集。各种实验的结果证明,所提出的模型在曲线下面积(AUC),计算复杂性和针对不平衡数据集的鲁棒性方面,胜过通常用于操纵面部图像检测任务的现有专家和智能系统。结果,所提出的框架将激励寻找更强大的改变的面部图像检测方法,并鼓励将所提出的模型集成在必须定期处理操纵图像的应用中。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号