首页> 外文期刊>Expert Systems with Application >A constrained portfolio trading system using particle swarm algorithm and recurrent reinforcement learning
【24h】

A constrained portfolio trading system using particle swarm algorithm and recurrent reinforcement learning

机译:基于粒子群算法和递归强化学习的受限证券交易系统

获取原文
获取原文并翻译 | 示例

摘要

This study extends a recurrent reinforcement portfolio allocation and rebalancing management system with complex portfolio constraints using particle swarm algorithms. In particular, we propose to use a combination of recurrent reinforcement learning (RRL) and particle swarm algorithm (PSO) with Calmar ratio for both asset allocation and constraint optimization. Using S&P100 index stocks, we show such a system with a Calmar ratio based objective function yields a better efficient frontier than the Sharpe ratio and mean-variance based portfolios. By comparing with multiple PSO based long only constrained portfolios, we propose an optimal portfolio trading system that is capable of generating both long and short signals and handling the common portfolio constraints. We further develop an adaptive RRL-PSO portfolio rebalancing decision system with a market condition stop-loss retraining mechanism, and we show that the proposed portfolio trading system outperforms the benchmarks consistently especially under high transaction cost conditions. (C) 2019 Elsevier Ltd. All rights reserved.
机译:这项研究使用粒子群算法扩展了具有复杂投资组合约束的循环补强投资组合分配和再平衡管理系统。特别是,我们建议将递归强化学习(RRL)和粒子群算法(PSO)与卡尔玛比率结合使用,以进行资产分配和约束优化。使用S&P100指数股票,我们显示出这样一种系统,其基于卡尔马比率的目标函数比基于Sharpe比率和均值方差的投资组合产生更好的有效边界。通过与基于多个PSO的多头受限投资组合进行比较,我们提出了一种最优的投资组合交易系统,该系统能够生成多头和空头信号并能够处理常见的投资组合约束。我们进一步开发了具有市场条件止损再训练机制的自适应RRL-PSO投资组合再平衡决策系统,并且我们证明了拟议的投资组合交易系统始终优于基准,尤其是在高交易成本条件下。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号