首页> 外文期刊>Expert Systems with Application >Computer vision-guided intelligent traffic signaling for isolated intersections
【24h】

Computer vision-guided intelligent traffic signaling for isolated intersections

机译:计算机视觉引导的智能交通信号隔离路口

获取原文
获取原文并翻译 | 示例

摘要

Computer vision-guided traffic management is an emerging area of research. Intelligent traffic signal control using computer vision is a less explored area of research. In this paper, we propose a new approach of traffic flow-based intelligent signal timing by temporally clustering optical flow features of moving vehicles using Temporal Unknown Incremental Clustering (TUIC) model. First, we propose a new inference scheme that works approximately 5-times faster as compared to the one originally proposed in TUIC in a dense traffic intersection. The new inference scheme can trace clusters representing moving objects that may be occluded while being tracked. Cluster counts of approach roads have been used for signal timing for traffic intersections. It is done by detecting cluster motion inside the regions-of-interest (ROI) marked at the entry and exit locations of intersection approaches. Departure rates are learned using Gaussian regression to parameterize traffic variations. Using the learned parameters as a function of cluster count, an adaptive signal timing algorithm, namely Throughput and Average Waiting Time Optimization (TAWTO) has been proposed. Experimental results reveal that the proposed method can achieve better average waiting time and throughput as compared to the state-of-the-art signal timing algorithms. We intend to publish two datasets as part of this work for enabling the research community to explore computer vision aided solutions for typical problems such as intelligent traffic controlling, violation detection in chaotic road intersections, etc. (C) 2019 Elsevier Ltd. All rights reserved.
机译:计算机视觉引导的流量管理是一个新兴的研究领域。使用计算机视觉的智能交通信号控制是研究较少的领域。在本文中,我们通过使用时间未知增量聚类(TUIC)模型对移动车辆的光流特征进行时间聚类,提出了一种基于交通流的智能信号计时的新方法。首先,我们提出了一种新的推理方案,该方案比在密集交通路口的TUIC中最初提出的方案快大约5倍。新的推理方案可以跟踪表示在跟踪时可能被遮挡的运动对象的聚类。进场道路的群集计数已用于交通路口的信号计时。这是通过检测在交叉口入口和出口位置标记的感兴趣区域(ROI)内部的群集运动来完成的。出发率是使用高斯回归来参数化交通流量变化的。利用学习参数作为簇数的函数,提出了一种自适应信号定时算法,即吞吐量和平均等待时间优化(TAWTO)。实验结果表明,与最新的信号定时算法相比,该方法可以实现更好的平均等待时间和吞吐量。作为这项工作的一部分,我们打算发布两个数据集,以使研究社区能够探索针对典型问题的计算机视觉辅助解决方案,例如智能交通控制,混乱的十字路口中的违规检测等。(C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号