首页> 外文期刊>Expert Systems with Application >Markov multiple feature random fields model for the segmentation of brain MR images
【24h】

Markov multiple feature random fields model for the segmentation of brain MR images

机译:马尔可夫多特征随机场模型用于脑部MR图像分割

获取原文
获取原文并翻译 | 示例

摘要

In the research of expert and intelligent systems on three-dimensional (3-D) brain magnetic resonance (MR) images, segmentation is the fundamental step of quantitative analysis of brain tissues. Due to the influence of various factors on brain MR images, segmentation is challenging. The Markov random field (MRF) model is promising for segmentation given some recent encouraging results. However, the traditional MRF model usually relies on a single feature. In this paper, we first propose a novel Markov multiple feature random fields (MMFRF) model, which is able to combine various types of features into a unified decision model using the Bayesian framework. Second, we mainly focus our research on two feature random fields in the MMFRF model for the segmentation of brain MR images. The intensity feature random field and the texture feature random field are combined into a unified framework to model the image. In particular, we use patch-based 3-D texture features through gray-level co-occurrence matrix (GLCM) statistics to construct the texture feature random field. The performance of our proposed method is compared with some state-of-the-art approaches on both real and simulated brain MR datasets. The experimental results demonstrate that the performance of the proposed method is superior to the competing approaches. In theory, the traditional MRF model can be treated as a special case of the proposed general MMFRF model where only one feature random field is considered. Furthermore, the results also show the feasibility of employing the proposed method, which provides accurate and efficient brain tissue segmentation, to develop effective expert and intelligent systems for brain MR images. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在有关三维(3-D)脑磁共振(MR)图像的专家和智能系统的研究中,分割是对脑组织进行定量分析的基本步骤。由于各种因素对大脑MR图像的影响,分割具有挑战性。鉴于最近的一些令人鼓舞的结果,马尔可夫随机场(MRF)模型有望用于细分。但是,传统的MRF模型通常依赖于单个功能。在本文中,我们首先提出了一个新颖的马尔可夫多特征随机域(MMFRF)模型,该模型能够使用贝叶斯框架将各种类型的特征组合成一个统一的决策模型。其次,我们主要将研究重点放在MMFRF模型中用于脑部MR图像分割的两个特征随机场上。将强度特征随机场和纹理特征随机场组合到一个统一的框架中以对图像进行建模。特别是,我们通过灰度共现矩阵(GLCM)统计信息使用基于补丁的3-D纹理特征来构造纹理特征随机字段。我们的方法的性能与真实和模拟的大脑MR数据集上的一些最新方法进行了比较。实验结果表明,该方法的性能优于竞争方法。从理论上讲,传统MRF模型可以看作是所提出的一般MMFRF模型的特例,其中只考虑了一个特征随机场。此外,结果还显示了使用所提出的方法(提供准确而有效的脑组织分割)来开发有效的专家和智能系统以进行脑MR图像的可行性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2019年第11期|79-92|共14页
  • 作者

    Hu Kai; Gao Xieping; Zhang Yuan;

  • 作者单位

    Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Peoples R China|Xiangtan Univ, Postdoctoral Res Stn Mech, Xiangtan 411105, Peoples R China;

    Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Peoples R China|Xiangnan Univ, Coll Software & Commun Engn, Chenzhou 423043, Peoples R China;

    Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Markov random field; Multiple feature random fields; Segmentation; Magnetic resonance imaging;

    机译:马尔可夫随机场;多特征随机场;分割;磁共振成像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号