首页> 外文期刊>Expert Systems with Application >Machine learning algorithms for predicting drugs-tissues relationships
【24h】

Machine learning algorithms for predicting drugs-tissues relationships

机译:机器学习算法,用于预测药物与组织的关系

获取原文
获取原文并翻译 | 示例

摘要

The prediction of drug candidates for given tissues of organisms based on expression data is a critical biological problem. By correctly predicting drug candidates for given tissues, biologists can (1) avoid an experimental process of high-throughput screening that requires excessive time and costly equipment and (2) accelerate the drug discovery process by automatically assigning drug candidates. Although high throughput screening for therapeutic compounds lead to the generation of expression data, the process of correctly assigning candidate drugs based on such data remains a rigorous task. Hence, the design of high-performance machine learning (ML) algorithms is crucial for data analysts who work with clinicians. Clinicians incorporate advanced ML tools into expert and intelligent systems to improve the drug discovery process by accurately identifying drug candidates. The transfer learning approaches that are necessary to improve the prediction performance of several tasks that are involved in identifying drug candidates are presented in this paper. The performances of machine learning algorithms are compared in the transfer learning setting by employing several evaluation measures on real data that are obtained from experiments conducted on rats to identify drug candidates. The experimental results show that the proposed transfer learning approaches outperform baseline approaches in terms of prediction performance and statistical significance. (C) 2019 Elsevier Ltd. All rights reserved.
机译:基于表达数据预测给定生物组织的候选药物是一个关键的生物学问题。通过正确预测给定组织的候选药物,生物学家可以(1)避免需要大量时间和昂贵设备的高通量筛选实验过程,以及(2)通过自动分配候选药物来加快药物发现过程。尽管对治疗化合物的高通量筛选导致表达数据的产生,但是基于此类数据正确分配候选药物的过程仍然是一项艰巨的任务。因此,高性能机器学习(ML)算法的设计对于与临床医生合作的数据分析师至关重要。临床医生将先进的ML工具整合到专家和智能系统中,以通过准确识别候选药物来改善药物发现过程。本文介绍了提高识别候选药物的多项任务的预测性能所必需的转移学习方法。在迁移学习环境中,通过对真实数据进行多种评估措施来比较机器学习算法的性能,这些评估方法是从对大鼠进行的实验中识别出候选药物而获得的。实验结果表明,所提出的转移学习方法在预测性能和统计意义上优于基线方法。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号