首页> 外文期刊>Expert systems with applications >Investigation of engine fault diagnosis using discrete wavelet transform and neural network
【24h】

Investigation of engine fault diagnosis using discrete wavelet transform and neural network

机译:基于离散小波变换和神经网络的发动机故障诊断研究

获取原文
获取原文并翻译 | 示例

摘要

An investigation of a fault diagnostic technique for internal combustion engines using discrete wavelet transform (DWT) and neural network is presented in this paper. Generally, sound emission signal serves as a promising alternative to the condition monitoring and fault diagnosis in rotating machinery when the vibration signal is not available. Most of the conventional fault diagnosis techniques using sound emission and vibration signals are based on analyzing the signal amplitude in the time or frequency domain. Meanwhile, the continuous wavelet transform (CWT) technique was developed for obtaining both time-domain and frequency-domain information. Unfortunately, the CWT technique is often operated over a longer computing time. In the present study, a DWT technique which is combined with a feature selection of energy spectrum and fault classification using neural network for analyzing fault signal is proposed for improving the shortcomings without losing its original property. The features of the sound emission signal at different resolution levels are extracted by multi-resolution analysis and Parseval's theorem [Gaing, Z. L. (2004). Wavelet-based neural network for power disturbance recognition and classification. IEEE Transactions on Power Delivery 19, 1560-1568]. The algorithm is obtained from previous work by Daubechies [Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communication on Pure and Applied Mathematics 41, 909-996.], the"db4", "db8" and "db20" wavelet functions are adopted to perform the proposed DWT technique. Then, these features are used for fault recognition using a neural network. The experimental results indicated that the proposed system using the sound emission signal is effective and can be used for fault diagnosis of various engine operating conditions.
机译:本文提出了一种基于离散小波变换(DWT)和神经网络的内燃机故障诊断技术的研究。通常,当振动信号不可用时,声音发射信号可以替代旋转机械中的状态监测和故障诊断。使用声音发射和振动信号的大多数常规故障诊断技术都是基于分析时域或频域中的信号幅度。同时,开发了连续小波变换(CWT)技术来获取时域和频域信息。不幸的是,CWT技术通常需要更长的计算时间。在本研究中,提出了一种结合了能谱特征选择和神经网络故障分类技术的DWT技术,用于分析故障信号,以在不损失其原有性能的情况下改善其缺点。通过多分辨率分析和Parseval定理[Gaing,Z. L.(2004),提取了不同分辨率级别的声音发射信号的特征。基于小波的神经网络用于电力干扰识别和分类。 IEEE Transactions on Power Delivery 19,1560-1568]。该算法从Daubechies的先前工作中获得[Daubechies,I.(1988)。紧支撑小波的正交基。关于纯数学和应用数学41,909-996。的通信,采用“ db4”,“ db8”和“ db20”小波函数来执行所提出的DWT技术。然后,将这些功能用于通过神经网络进行故障识别。实验结果表明,所提出的利用声音发射信号的系统是有效的,并且可以用于各种发动机工况的故障诊断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号