首页> 外文期刊>Expert systems with applications >A reinforcement agent for object segmentation in ultrasound images
【24h】

A reinforcement agent for object segmentation in ultrasound images

机译:用于超声图像中目标分割的增强剂

获取原文
获取原文并翻译 | 示例

摘要

The principal contribution of this work is to design a general framework for an intelligent system to extract one object of interest from ultrasound images. This system is based on reinforcement learning. The input image is divided into several sub-images, and the proposed system finds the appropriate local values for each of them so that it can extract the object of interest. The agent uses some images and their ground-truth (manually segmented) version to learn from. A reward function is employed to measure the similarities between the output and the manually segmented images, and to provide feedback to the agent. The information obtained can be used as valuable knowledge stored in the Q-matrix. The agent can then use this knowledge for new input images. The experimental results for prostate segmentation in trans-rectal ultrasound images show high potential of this approach in the field of ultrasound image segmentation.
机译:这项工作的主要贡献是为智能系统设计一个通用框架,以从超声图像中提取一个感兴趣的对象。该系统基于强化学习。输入图像被分成几个子图像,并且所提出的系统为每个子图像找到合适的局部值,以便它可以提取感兴趣的对象。该代理使用一些图像及其真实性(手动分段)版本进行学习。使用奖励函数来测量输出和手动分割的图像之间的相似度,并向代理提供反馈。获得的信息可以用作存储在Q矩阵中的有价值的知识。然后,代理可以将此知识用于新的输入图像。经直肠超声图像中前列腺分割的实验结果表明,这种方法在超声图像分割领域具有很高的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号