首页> 外文期刊>Expert Systems with Application >Global stock market investment strategies based on financial network indicators using machine learning techniques
【24h】

Global stock market investment strategies based on financial network indicators using machine learning techniques

机译:基于机器学习技术的金融网络指标的全球股票市场投资策略

获取原文
获取原文并翻译 | 示例

摘要

This study presents financial network indicators that can be applied to global stock market investment strategies. We propose to design both undirected and directed volatility networks of global stock market based on simple pair-wise correlation and system-wide connectedness of national stock indices using a vector auto-regressive model. We examine the effect and usefulness of network indicators by applying them as inputs for determining strategies via several machine learning approaches (logistic regression, support vector machine, and random forest). Two strategies are constructed considering stock price indices: (1) global stock market prediction strategy and (2) regional allocation strategy for developed market/emerging market. According to the results of the performance analysis, network indicators were proven to be important supplementary indicators in predicting global stock market and regional relative directions (up/down). In particular, these indicators were more effective during market crisis periods. This study is the first attempt to construct strategies for global portfolio management using financial network indicators and to suggest how network indicators can be used in practical fields. (C) 2018 Elsevier Ltd. All rights reserved.
机译:这项研究提出了可应用于全球股票市场投资策略的金融网络指标。我们建议使用向量自回归模型,基于简单的成对相关性和国家股票指数的全系统连通性,设计全球股票市场的无向和有向波动率网络。我们通过将网络指标用作通过几种机器学习方法(逻辑回归,支持向量机和随机森林)确定策略的输入,来检查网络指标的效果和有用性。考虑股票价格指数,构建了两种策略:(1)全球股票市场预测策略;(2)发达市场/新兴市场的区域分配策略。根据绩效分析的结果,网络指标被证明是预测全球股票市场和区域相对方向(上/下)的重要补充指标。这些指标尤其在市场危机期间更为有效。这项研究是首次尝试使用金融网络指标构建全球投资组合管理策略,并提出如何在实际领域中使用网络指标的建议。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号