首页> 外文期刊>Expert Systems with Application >An indoor trajectory frequent pattern mining algorithm based on vague grid sequence
【24h】

An indoor trajectory frequent pattern mining algorithm based on vague grid sequence

机译:基于模糊网格序列的室内轨迹频繁模式挖掘算法

获取原文
获取原文并翻译 | 示例

摘要

Trajectory frequent pattern mining is an important branch of data mining. The constraint of indoor space is between Euclid space and road network space, which makes it difficult to represent the approximate positions. Grid partition method is a feasible way to solve this problem, but it will lead to a sharp problem of grid boundary. Considering the indoor trajectory frequent pattern mining, this paper proposes a grid partition method based on vertical projection distance (VGS) and a trajectory frequent pattern mining algorithm based on vague grid sequence (VGS-PrefixSpan). At first, each grid is divided into explicit zones and vague zones according to vertical projection distance. Then the trajectories are transformed into vague grid sequences. At last, VGS-PrefixSpan is a PrefixSpan-like algorithm to mine trajectory frequent patterns from vague grid sequences. Experimental results show that VGS-PrefixSpan has better performance than VSP-PrefixSpan under the same area ratio of explicit zones and covered zones, and has better mining results than VSP-PrefixSpan and GS-PrefixSpan under any value of MM _ Support. In terms of mining efficiency, the total time of VGS-PrefixSpan is close to GS-PrefixSpan and less than VSP-PrefixSpan about two orders of magnitude. Therefore, VGS-PrefixSpan is an effective and efficient algorithm in mining frequent patterns of indoor trajectories. As a research hotspot in Location Based Services (LBS), mining frequent patterns of indoor trajectories can protect the trajectory privacy of users from being leaked or mitigating the risk of leakage. Therefore, the study of trajectory frequent patterns is of great significance to public security and personal information protection. (C) 2018 Elsevier Ltd. All rights reserved.
机译:轨迹频繁模式挖掘是数据挖掘的重要分支。室内空间的约束在欧几里德空间和路网空间之间,这使得很难表示近似位置。网格划分方法是解决该问题的一种可行方法,但会导致尖锐的网格边界问题。针对室内轨迹频繁模式挖掘问题,提出了一种基于垂直投影距离(VGS)的网格划分方法和一种基于模糊网格序列的轨迹频繁模式挖掘算法(VGS-PrefixSpan)。首先,根据垂直投影距离将每个网格划分为显式区域和模糊区域。然后将轨迹转换为模糊的网格序列。最后,VGS-PrefixSpan是一种类似于PrefixSpan的算法,用于从模糊的网格序列中挖掘轨迹频繁模式。实验结果表明,在相同的显性区域和覆盖区域的面积比下,VGS-PrefixSpan具有比VSP-PrefixSpan更好的性能,并且在任何MM_Support值下均具有比VSP-PrefixSpan和GS-PrefixSpan更好的挖掘结果。就挖掘效率而言,VGS-PrefixSpan的总时间接近GS-PrefixSpan,但比VSP-PrefixSpan少两个数量级。因此,VGS-PrefixSpan是挖掘室内轨迹频繁模式的一种有效算法。作为基于位置的服务(LBS)的研究热点,挖掘室内轨迹的频繁模式可以保护用户的轨迹隐私免受泄漏或减轻泄漏的风险。因此,研究轨迹频繁模式对公共安全和个人信息保护具有重要意义。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2019年第3期|614-624|共11页
  • 作者单位

    Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China;

    Nanjing Agr Univ, Coll Informat Sci & Technol, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Vague grid; Trajectory frequent pattern; Indoor; Data mining; Pattern mining;

    机译:模糊网格;轨迹频繁模式;室内;数据挖掘;模式挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号