首页> 外文期刊>Expert Systems with Application >Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism
【24h】

Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism

机译:利用特征精英机制优化基于多目标PSO的特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is an important preprocessing task in classification that eliminates the irrelevant, redundant, and noisy features. improving the performance of model, decreasing the computational cost, and adjusting the "curse of dimensionality" are the key advantages of feature selection task. The evolution process of the existing multi-objective based feature selection algorithms is relied on the objective space while the problem space contains useful information. This paper proposes a multi-objective PSO based method named RFPSOFS that ranks the features based on their frequencies in the archive set. Then, these ranks are used to refine the archive set and guide the particles. The proposed method is compared with three PSO based and one genetic based multi-objective methods on 9 Benchmark datasets. Qualitative and quantitative analyses of the results are performed by visual analysis of the Pareto fronts and three performance metrics respectively. Finally, remarkable performance in datasets with more than hundred features and satisfactory performance in datasets with less than hundred features are obtained. (C) 2018 Elsevier Ltd. All rights reserved.
机译:特征选择是分类中的一项重要的预处理任务,它消除了不相关,多余和嘈杂的特征。改进模型的性能,降低计算成本以及调整“维数诅咒”是特征选择任务的主要优势。现有的基于多目标的特征选择算法的演化过程依赖于目标空间,而问题空间包含有用的信息。本文提出了一种基于多目标PSO的名为RFPSOFS的方法,该方法根据特征在存档集中的频率对其进行排名。然后,使用这些等级来优化存档集并引导粒子。将该方法与9个基准数据集上的三种基于PSO和一种基于遗传的多目标方法进行了比较。对结果的定性和定量分析分别通过对Pareto前沿和三个绩效指标的可视化分析来进行。最后,在具有多于一百个特征的数据集中获得了卓越的性能,并在具有少于一百个特征的数据集中获得了令人满意的性能。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号