首页> 外文期刊>Expert Systems with Application >An unsupervised topic-sentiment joint probabilistic model for detecting deceptive reviews
【24h】

An unsupervised topic-sentiment joint probabilistic model for detecting deceptive reviews

机译:用于检测欺骗性评论的无监督主题情感联合概率模型

获取原文
获取原文并翻译 | 示例

摘要

In electronic commerce, online reviews play very important roles in customers' purchasing decisions. Unfortunately, malicious sellers often hire buyers to fabricate fake reviews to improve their reputation. In order to detect deceptive reviews and mine the topics and sentiments from the reviews, in this paper, we propose an unsupervised topic-sentiment joint probabilistic model (UTSJ) based on Latent Dirichlet Allocation (LDA) model. This model first employs Gibbs sampling algorithm to approximate parameters of maximum likelihood function offline and obtain topic-sentiment joint probabilistic distribution vector for each review. Secondly, a Random Forest classifier and a SVM (Support Vector Machine) classifier are trained offline, respectively. Experimental results on real-life datasets show that our proposed model is better than baseline models such as n-grams, character n-grams in token, POS (part-of-speech), LDA, and JST (Joint Sentiment/Topic). Moreover, our UTSJ model outperforms or performs similarly to benchmark models in detecting deceptive reviews over balanced dataset and unbalanced dataset in different domains. Particularly, our UTSJ model is good at dealing with real-life unbalanced big data, which makes it very suitable for being applied in e-commerce environment. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在电子商务中,在线评论在客户的购买决策中起着非常重要的作用。不幸的是,恶意卖家经常雇用买家伪造评论,以提高声誉。为了检测欺骗性评论并从评论中挖掘主题和情感,本文提出了一种基于潜在狄利克雷分配(LDA)模型的无监督主题情感联合概率模型(UTSJ)。该模型首先采用吉布斯采样算法离线估计最大似然函数的参数,并获得每次评论的主题情感联合概率分布矢量。其次,分别对脱机训练随机森林分类器和支持向量机(SVM)分类器。在真实数据集上的实验结果表明,我们提出的模型优于基线模型,例如n-gram,令牌中的字符n-gram,POS(词性),LDA和JST(联合情感/主题)。此外,我们的UTSJ模型在检测不同领域的平衡数据集和非平衡数据集方面的欺骗性评论时,性能优于或类似于基准模型。特别是,我们的UTSJ模型非常适合处理现实生活中不平衡的大数据,这使其非常适合在电子商务环境中应用。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号