首页> 外文期刊>Expert Systems with Application >An intelligent mobile-enabled expert system for tuberculosis disease diagnosis in real time
【24h】

An intelligent mobile-enabled expert system for tuberculosis disease diagnosis in real time

机译:用于结核病实时诊断的智能移动专家系统

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an investigation into the development of an intelligent mobile-enabled expert system to perform an automatic detection of tuberculosis (TB) disease in real-time. One third of the global population are infected with the TB bacterium, and the prevailing diagnosis methods are either resource-intensive or time consuming. Thus, a reliable and easy-to-use diagnosis system has become essential to make the world TB free by 2030, as envisioned by the World Health Organisation. In this work, the challenges in implementing an efficient image processing platform is presented to extract the images from plasmonic ELISAs for TB antigen-specific antibodies and analyse their features. The supervised machine learning techniques are utilised to attain binary classification from eighteen lower-order colour moments. The proposed system is trained off-line, followed by testing and validation using a separate set of images in real-time. Using an ensemble classifier, Random Forest, we demonstrated 98.4% accuracy in TB antigen-specific antibody detection on the mobile platform. Unlike the existing systems, the proposed intelligent system with real time processing capabilities and data portability can provide the prediction without any opto-mechanical attachment, which will undergo a clinical test in the next phase. (C) 2018 The Authors. Published by Elsevier Ltd.
机译:本文介绍了一种智能移动专家系统的开发情况,该系统可以实时自动检测结核病。全球人口的三分之一感染了结核菌,流行的诊断方法既耗费资源又耗时。因此,正如世界卫生组织所设想的那样,可靠和易于使用的诊断系统对于到2030年使世界结核病免费成为至关重要。在这项工作中,提出了实现高效图像处理平台的挑战,该挑战是从血浆ELISA中提取针对TB抗原特异性抗体的图像并分析其特征。有监督的机器学习技术被用来从18个低阶色阶中获得二进制分类。提议的系统是脱机训练的,然后使用单独的一组实时图像进行测试和验证。使用整体分类器Random Forest,我们在移动平台上的TB抗原特异性抗体检测中显示了98.4%的准确性。与现有系统不同,所提出的具有实时处理能力和数据可移植性的智能系统可以在没有任何光电机械附件的情况下提供预测,该光学机械附件将在下一阶段进行临床测试。 (C)2018作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号