首页> 外文期刊>Expert Systems with Application >Speeding up single-query sampling-based algorithms using case-based reasoning
【24h】

Speeding up single-query sampling-based algorithms using case-based reasoning

机译:使用基于案例的推理加速基于单查询采样的算法

获取原文
获取原文并翻译 | 示例

摘要

We present an extension to the single-query sampling-based algorithm for improving its response time using Case-Based Reasoning (CBR) technique. Unlike traditional experience-based planners, CBR depends on a single thread execution which reduces the required computation power. Additionally, it is always biased towards exploration rather than exploitation to overcome experience-based algorithms drawbacks. Results indicate that CBR extension has significantly improved sampling-based response time for similar served queries. (C) 2018 Elsevier Ltd. All rights reserved.
机译:我们提出了对基于单查询采样的算法的扩展,以使用基于案例的推理(CBR)技术改善其响应时间。与传统的基于经验的计划者不同,CBR依赖于单线程执行,这降低了所需的计算能力。另外,它总是偏向于探索而不是探索以克服基于经验的算法的缺点。结果表明,对于类似的已投放查询,CBR扩展大大改善了基于采样的响应时间。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号