首页> 外文期刊>Expert Systems with Application >Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition
【24h】

Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition

机译:长短期记忆的集合分类器,具有用于活动识别的二进制传感器上的模糊时间窗

获取原文
获取原文并翻译 | 示例

摘要

There are approaches that successfully recognize activities of daily living by using a trained classifier on feature vectors created from binary sensor data. Although these approaches have been successful, there are still open issues such as the evaluation of multiple temporal windows, ensembles of classifiers or unbalanced classes which need to be addressed in order to improve the performance of the real-time activity recognition process. In this paper, we present a methodology for Real-Time Activity Recognition based on the diverse fields of Machine Learning, including Fuzzy Logic and Recurrent Neural Networks. The methodology uses a long-term and short-term representation of binary-sensor activations based on Fuzzy Temporal Windows. The paper proposes an ensemble of activity-based classifiers for the purposes of balanced training, where each classifier in the ensemble is a Long Short-Term Memory. The approach was evaluated using two binary-sensor datasets of daily living activities and benchmarked against previous approaches based on the combination of sensor activation features. (C) 2018 Elsevier Ltd. All rights reserved.
机译:通过对从二进制传感器数据创建的特征向量使用经过训练的分类器,可以成功地识别日常生活活动。尽管这些方法已经成功,但是仍然存在诸如多个时间窗口的评估,分类器集合或不平衡类之类的开放性问题,这些问题必须加以解决才能提高实时活动识别过程的性能。在本文中,我们提出了一种基于机器学习各个领域的实时活动识别方法,包括模糊逻辑和递归神经网络。该方法使用基于模糊时间窗口的二进制传感器激活的长期和短期表示。为了平衡训练的目的,本文提出了一个基于活动的分类器集合,其中集合中的每个分类器都是一个长短期记忆。使用两个日常生活活动的二进制传感器数据集对该方法进行了评估,并基于传感器激活功能的组合与以前的方法进行了比较。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号