首页> 外文期刊>Expert systems with applications >Evolving And Clustering Fuzzy Decision Tree For Financial Time Series Data Forecasting
【24h】

Evolving And Clustering Fuzzy Decision Tree For Financial Time Series Data Forecasting

机译:演化聚类模糊决策树的金融时间序列数据预测

获取原文
获取原文并翻译 | 示例

摘要

Stock price predictions have always been a subject of interest for investors and professional analysts. Nevertheless, determining the best time to buy or sell a stock remains very difficult because there are many factors that may influence the stock prices. This paper establishes a novel financial time series-forecasting model by evolving and clustering fuzzy decision tree for stocks in Taiwan Stock Exchange Corporation (TSEC). This forecasting model integrates a data clustering technique, a fuzzy decision tree (FDT), and genetic algorithms (GA) to construct a decision-making system based on historical data and technical indexes. The set of historical data is divided into k sub-clusters by adopting K-means algorithm. GA is then applied to evolve the number of fuzzy terms for each input index in FDT so the forecasting accuracy of the model can be further improved. A different forecasting model will be generated for each sub-cluster. In other words, the number of fuzzy terms in each sub-cluster will be different. Hit rate is applied as a performance measure and the proposed GAFDT model has the best performance of 82% average hit rate when compared with other approaches on various stocks in TSEC.
机译:股价预测一直是投资者和专业分析师关注的话题。然而,由于有许多因素可能影响股票价格,因此确定最佳时间来买卖股票仍然非常困难。本文通过对台湾证券交易所股票(TSEC)的模糊决策树进行进化和聚类,建立了一种新颖的财务时间序列预测模型。该预测模型集成了数据聚类技术,模糊决策树(FDT)和遗传算法(GA),以基于历史数据和技术指标构建决策系统。采用K-means算法将历史数据集划分为k个子类。然后,将遗传算法应用于FDT中每个输入索引的模糊项数量的演化,从而可以进一步提高模型的预测准确性。将为每个子集群生成不同的预测模型。换句话说,每个子集群中模糊项的数量将不同。命中率被用作绩效指标,与TSEC各种股票上的其他方法相比,所提出的GAFDT模型具有82%的平均命中率的最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号