首页> 外文期刊>Expert systems with applications >Selecting Of The Optimal Feature Subset And Kernel Parametersin Digital Modulation Classification By Using Hybrid Geneticrnalgorithm-support Vector Machines: Hgasvm
【24h】

Selecting Of The Optimal Feature Subset And Kernel Parametersin Digital Modulation Classification By Using Hybrid Geneticrnalgorithm-support Vector Machines: Hgasvm

机译:混合遗传算法-支持向量机:Hgasvm在数字调制分类中最优特征子集和核心参数的选择

获取原文
获取原文并翻译 | 示例

摘要

The support vector machines is a new technique for many pattern recognition areas. The digital modulation classification is one of these pattern recognition areas. In SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these kernel types, kernel parameters and features should be used for SVM training. In this study, a hybrid of genetic algorithm-support vector machines (HGASVM) approach is presented in digital modulation classification area for increasing the support vector machines (SVM) classification accuracy. This HGASVM approach proposed in this paper selects of the optimal kernel function type, kernel function parameter, most appropriate wavelet filter type for problem, wavelet entropy parameter, and soft margin constant C penalty parameter of support vector machines (SVM) classifier. The classification accuracy of this HGASVM approach is tried by using real digital modulation dataset and compared with the SVMs, which has kernel function type, kernel function parameter, wavelet filter type, wavelet entropy parameter, and C parameter are randomly selected. Here, discrete wavelet transform (DWT) and adaptive wavelet entropy are used in feature extraction stage of this HGASVM approach. The digital modulation types used in this study are ASK-2, ASK-4, ASKS, FSK-2, FSK-4, FSK-8, PSK-2, PSK-4, and PSK-8. The experimental studies conducted in this study show that the classification accuracy of this HGASVM approach is more superior than SVM, which has constant parameters.
机译:支持向量机是一种用于许多模式识别领域的新技术。数字调制分类是这些模式识别领域之一。在SVM训练中,内核,内核参数和特征选择对于SVM分类准确性具有非常重要的作用。因此,应将这些内核类型,内核参数和功能中最合适的用于SVM培训。在这项研究中,在数字调制分类领域提出了一种遗传算法-支持向量机(HGASVM)的混合方法,以提高支持向量机(SVM)的分类精度。本文提出的这种HGASVM方法选择了最优的核函数类型,核函数参数,最适合问题的小波滤波器类型,小波熵参数以及支持向量机(SVM)分类器的软余量常数C罚参数。通过使用真实的数字调制数据集来尝试该HGASVM方法的分类精度,并与SVMs进行比较,该SVMs具有随机​​选择的核函数类型,核函数参数,小波滤波器类型,小波熵参数和C参数。在此,在这种HGASVM方法的特征提取阶段使用离散小波变换(DWT)和自适应小波熵。本研究中使用的数字调制类型为ASK-2,ASK-4,ASKS,FSK-2,FSK-4,FSK-8,PSK-2,PSK-4和PSK-8。这项研究进行的实验研究表明,这种HGASVM方法的分类精度要优于具有恒定参数的SVM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号