首页> 外文期刊>Expert systems with applications >Construction Of Supervised And Unsupervised Learning Systems For Multilingual Text Categorization
【24h】

Construction Of Supervised And Unsupervised Learning Systems For Multilingual Text Categorization

机译:多语言文本分类的有监督和无监督学习系统的构建

获取原文
获取原文并翻译 | 示例

摘要

Due to the availability of a huge amount of textual data from a variety of sources,users of internationally distributed information regions need effective methods and tools that enable them to discover,retrieve and categorize relevant information,in whatever language and form it may have been stored.This drives a convergence of numerous interests from diverse research communities focusing on the issues related to multilingual text categorization.In this work,we implemented and measured the performance of the leading supervised and unsupervised approaches for multilingual text categorization.We selected support vector machines (SVM) as representative of supervised techniques as well as latent semantic indexing (LSI) and self-organizing maps (SOM) techniques as our selective ones of unsupervised methods for system implementation.The preliminary results show that our platform models including both supervised and unsupervised learning methods have the potentials for multilingual text categorization.
机译:由于可以从各种来源获得大量文本数据,因此,国际分布信息区域的用户需要有效的方法和工具,使他们能够发现,检索和分类相关信息,而不论其存储的语言和形式如何这推动了来自不同研究社区的众多兴趣的集中,专注于与多语言文本分类有关的问题。在这项工作中,我们实施并衡量了领先的有监督和无监督的多语言文本分类方法的性能。我们选择了支持向量机( SVM)是监督技术的代表,潜在语义索引(LSI)和自组织映射(SOM)技术是我们选择的无监督系统实现方法之一。初步结果表明,我们的平台模型包括监督学习和监督学习方法可能会产生多语言文本类别组织化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号