首页> 外文期刊>Expert Systems with Application >Applying least squares support vector machines to the airframe wing-box structural design cost estimation
【24h】

Applying least squares support vector machines to the airframe wing-box structural design cost estimation

机译:将最小二乘支持向量机应用于机身机翼盒结构设计成本估算

获取原文
获取原文并翻译 | 示例

摘要

This research used the least squares support vector machines (LS-SVM) method to estimate the project design cost of an airframe wing-box structure. We also compared the estimation performance using back-propagation neural networks (BPN) and statistical response surface methodology (RSM). The solu-tion mechanism of the LS-SVM involved a simultaneous searched for the maximal margin as the target, taking into account the error calculated during training phase to determine the estimation problem mod-els. Two case studies involving the wing-box structure was investigated the separate structural parts case and the mixed structural parts case. The test results verified the feasibility of using the LS-SVM as well as its ability to make accurate estimations.
机译:这项研究使用最小二乘支持向量机(LS-SVM)方法来估算机身机翼盒结构的项目设计成本。我们还比较了使用反向传播神经网络(BPN)和统计响应面方法(RSM)的估计性能。 LS-SVM的解决机制涉及同时搜索最大裕量作为目标,同时考虑到训练阶段计算出的误差以确定估计问题模型。对涉及机翼箱结构的两个案例研究分别研究了单独的结构零件案例和混合的结构零件案例。测试结果证明了使用LS-SVM的可行性以及进行准确估计的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号