首页> 外文期刊>Expert Systems with Application >Audio steganalysis with Hausdorff distance higher order statistics using a rule based decision tree paradigm
【24h】

Audio steganalysis with Hausdorff distance higher order statistics using a rule based decision tree paradigm

机译:使用基于规则的决策树范式进行Hausdorff距离高阶统计量的音频隐写分析

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to construct a practical forensic steganalysis tool for audio signals that can prop-erly analyze the statistics disturbed by stego embedding and classify them to selected current stegano-graphic methods. The objective of this paper is to prove that the choice of effective stego sensitive features and a proficient machine learning paradigm enhances the detection accuracy of the steganalyser. In this paper a rule based approach with a family of six decision tree classifiers viz., Alternating Decision Tree, Decision Stump, J48, Logical Model Tree, Naive Baye's Tree and Fast Decision Tree learner, to per-form the detection of audio subliminal channel is introduced. In particular the higher order statistics extracted from the Hausdorff distance are investigated for an improvement of the detection performance, as competent audio steganalytic features. The evaluation of the enhanced feature space and the decision tree paradigm, on a database containing 4800 clean and stego audio files is performed for classical ste-ganographic as well as for watermarking algorithms. With this strategy it is shown how general forensic approach can detect information hiding techniques in the field of covert communication as well as for DRM applications. For the latter case, the detection of the presence of a potential watermark in a specific feature space can lead to new attacks or to a better design of the watermarking pattern.
机译:本文的目的是为音频信号构建一个实用的法医学隐写分析工具,该工具可以正确地分析隐蔽掩盖干扰的统计数据并将其分类为当前选定的隐密图法。本文的目的是证明选择有效的隐身敏感功能和熟练的机器学习范例可以提高隐写分析仪的检测精度。本文采用基于规则的方法,由六个决策树分类器组成,分别是交替决策树,决策树桩,J48,逻辑模型树,朴素贝叶树和快速决策树学习器,以执行音频潜意识通道的检测介绍。尤其是,研究了从Hausdorff距离中提取的高阶统计量,以改善检测性能,作为有效的音频隐写分析功能。在包含4800个干净和隐密音频文件的数据库上,对经典隐密图形和水印算法执行了增强的特征空间和决策树范式的评估。通过这种策略,可以显示一般的取证方法如何在秘密通信领域以及DRM应用程序中检测信息隐藏技术。对于后一种情况,检测到特定特征空间中潜在水印的存在会导致新的攻击或对水印图案进行更好的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号