首页> 外文期刊>Expert Systems with Application >Recognition of multi-scroll chaotic attractors using wavelet-based neural network and performance comparison of wavelet families
【24h】

Recognition of multi-scroll chaotic attractors using wavelet-based neural network and performance comparison of wavelet families

机译:基于小波神经网络的多滚动混沌吸引子识别及小波族性能比较

获取原文
获取原文并翻译 | 示例

摘要

In this comparative study, the implementation of feature extraction and classification algorithm based on wavelet based neural network (WBNN) is presented for recognition of multi-scroll chaotic attractors using only one of the state variables of Chua's circuit with a multi-segment resistor. Sixteen different fea-ture extraction methods (Db1, Db2, Db6, Db10, Sym2, Sym3, Sym5, Bior1.1, Bior1.3, Bior2.2, Bior2.4, Bior2.6, Bior4.4, Coif1, Coif2, and Coif5) are generated by separately using Daubechies, Biorthogonal, Coif-lets, and Symlets wavelet filters. WBNN model is used, which consists of two layers: adaptive wavelet entropy and multi layer perceptron (MLP) neural networks for expert multi-scroll chaotic attractor clas-sification. The performance of this comparison system is evaluated by using total 600 different chaotic signals that have different initial values and resistors values for each of these feature extraction methods. The performance comparison of these features extraction methods and the advantages and disadvantages of the methods are examined.
机译:在这项比较研究中,提出了基于小波神经网络(WBNN)的特征提取和分类算法的实现,该算法仅使用Chua电路的状态变量之一和多段电阻器即可识别多卷混沌吸引子。十六种不同的功能提取方法(Db1,Db2,Db6,Db10,Sym2,Sym3,Sym5,Bior1.1,Bior1.3,Bior2.2,Bior2.4,Bior2.6,Bior4.4,Coif1,Coif2,和Coif5)分别通过使用Daubechies,Biorthogonal,Coif-lets和Symlets小波滤波器生成。使用WBNN模型,该模型由两层组成:自适应小波熵和多层感知器(MLP)神经网络,用于专家级多卷混沌吸引子分类。通过使用总共600种不同的混沌信号(每个特征提取方法的初始值和电阻值都不同)来评估此比较系统的性能。研究了这些特征提取方法的性能比较以及该方法的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号