首页> 外文期刊>Expert systems with applications >Development of an adaptive neuro-fuzzy classifier using linguistic hedges: Part 1
【24h】

Development of an adaptive neuro-fuzzy classifier using linguistic hedges: Part 1

机译:使用语言树篱开发自适应神经模糊分类器:第1部分

获取原文
获取原文并翻译 | 示例

摘要

In this study, the development of an adaptive neuro-fuzzy classifier (ANFC) is proposed by using linguistic hedges (LHs). The LHs that are constituted by the power of fuzzy sets introduce the importance of the fuzzy sets for fuzzy rules. They can also change the primary meaning of fuzzy membership functions to secondary meaning. To improve the meaning of fuzzy rules and classification accuracy, a layer, which defines the adaptive linguistic hedges, is added into the proposed classifier network. The LHs are trained with other network parameters by scaled conjugate gradient (SCG) training algorithm. The tuned LH values of fuzzy sets improve the flexibility of fuzzy sets, this property of LH can improve the distinguishabil-ity rates of overlapped classes. The new classifier is compared with the other classifiers for different classification problems. The empirical results indicate that the recognition rates of the new classifier are better than the other fuzzy-based classification methods with less fuzzy rules.
机译:在这项研究中,通过使用语言树篱(LHs)提出了一种自适应神经模糊分类器(ANFC)的开发。由模糊集的力量构成的LH引入了模糊集对模糊规则的重要性。他们还可以将模糊隶属函数的主要含义更改为次要含义。为了提高模糊规则的含义和分类准确性,在所提出的分类器网络中增加了一层定义自适应语言树篱的层。通过缩放共轭梯度(SCG)训练算法,用其他网络参数训练LH。调整模糊集的LH值可以提高模糊集的灵活性,LH的这一特性可以提高重叠类的可分辨率。将新分类器与其他分类器进行比较,以解决不同的分类问题。实验结果表明,新分类器的识别率优于其他基于模糊规则的分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号