首页> 外文期刊>Expert systems with applications >Sequential combination of statistics, econometrics and Adaptive Neural-Fuzzy Interface for stock market prediction
【24h】

Sequential combination of statistics, econometrics and Adaptive Neural-Fuzzy Interface for stock market prediction

机译:统计,计量经济学和自适应神经模糊接口的顺序组合用于股票市场预测

获取原文
获取原文并翻译 | 示例

摘要

Since last decade advanced data simulations help to identify hidden trends in a time series. Our purpose is to identify uncertainties during recession period using statistical analysis, econometrical analysis and Adaptive Neural-Fuzzy networks. In this paper, initially through computational analysis we are testing financial data using correlation tests, likelihood tests, heteroscedastic characteristics analysis and hypothesis tests. These statistical and econometrical tests give us exact nature of data set and relation between data points. All tests and analysis are studied on NASDAQ Stock Market over last 2-years. Then after, optimized subtractive data clustering method is used to cluster the data and create fuzzy membership functions by using Sugeno-type Fuzzy Interface System (FIS). Finally, we are using optimized hybrid learning algorithm in customized Adaptive Neural Fuzzy Interface System (ANFIS) to train the network. Hence, we got an efficient Adaptive Neural-Fuzzy network to check and test the data sets and use it for forecasting the stock market index. During this, the hybrid learning algorithm combines Least-Square method and the Back-propagation gradient descent methods for training the Fuzzy Interface System (FIS) with the help of optimized membership functions and parameters. This paper presents a state-of-art for Adaptive Neural-Fuzzy Network (ANFN) application to forecast stock market index and involved market uncertainties by combining the econometrical test to optimize the ANFIS and FIS function.
机译:自从上个十年以来,高级数据模拟有助于识别时间序列中的隐藏趋势。我们的目的是使用统计分析,计量经济学分析和自适应神经模糊网络来识别衰退期的不确定性。在本文中,首先,通过计算分析,我们正在使用相关性检验,似然检验,异方差特征分析和假设检验来测试财务数据。这些统计和计量经济学测试为我们提供了数据集的确切性质以及数据点之间的关系。在过去的两年中,所有测试和分析都在纳斯达克股票市场上进行了研究。然后,采用优化的减法数据聚类方法对数据进行聚类,并使用Sugeno型模糊接口系统(FIS)创建模糊隶属函数。最后,我们在定制的自适应神经模糊接口系统(ANFIS)中使用优化的混合学习算法来训练网络。因此,我们得到了一个高效的自适应神经模糊网络来检查和测试数据集,并将其用于预测股市指数。在此期间,混合学习算法结合了最小二乘方法和反向传播梯度下降方法,以借助优化的隶属函数和参数来训练模糊接口系统(FIS)。本文提出了一种最新的自适应神经模糊网络(ANFN)应用,它通过结合计量经济学测试来优化ANFIS和FIS函数,从而预测股票市场指数和涉及的市场不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号