首页> 外文期刊>Expert systems with applications >Churn models for prepaid customers in the cellular telecommunication industry using large data marts
【24h】

Churn models for prepaid customers in the cellular telecommunication industry using large data marts

机译:使用大型数据集市的蜂窝电信行业预付费客户的Churn模型

获取原文
获取原文并翻译 | 示例

摘要

In this article, we test the usefulness of the popular data mining models to predict churn of the clients of the Polish cellular telecommunication company. When comparing to previous studies on this topic, our research is novel in the following areas: (1) we deal with prepaid clients (previous studies dealt with postpaid clients) who are far more likely to churn, are less stable and much less is known about them (no application, demographical or personal data), (2) we have 1381 potential variables derived from the clients' usage (previous studies dealt with data with at least tens of variables) and (3) we test the stability of models across time for all the percentiles of the lift curve - our test sample is collected six months after the estimation of the model. The main finding from our research is that linear models, especially logistic regression, are a very good choice when modelling churn of the prepaid clients. Decision trees are unstable in high percentiles of the lift curve, and we do not recommend their usage.
机译:在本文中,我们测试了流行的数据挖掘模型对预测波兰蜂窝电信公司客户流失的有用性。与以前有关该主题的研究相比,我们的研究在以下几个方面是新颖的:(1)我们与更容易流失,不稳定且知之甚少的预付费客户(以前的研究针对后付费客户)打交道。关于它们(没有应用程序,人口统计或个人数据),(2)我们有1381个潜在变量来自客户的使用情况(先前的研究处理的数据至少包含数十个变量),(3)我们测试了模型在整个模型中的稳定性所有升力曲线百分位的时间-我们的测试样本是在模型估算后六个月收集的。我们研究的主要发现是,在对预付费客户的流失建模时,线性模型(尤其是逻辑回归)是一个很好的选择。决策树在提升曲线的高百分位数中不稳定,因此不建议使用它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号