首页> 外文期刊>Expert systems with applications >A novel dual wing harmonium model aided by 2-D wavelet transform subbands for document data mining
【24h】

A novel dual wing harmonium model aided by 2-D wavelet transform subbands for document data mining

机译:二维小波变换子带辅助的双翼谐音模型的文档数据挖掘

获取原文
获取原文并翻译 | 示例

摘要

A novel dual wing harmonium model that integrates multiple features including term frequency features and 2-D wavelet transform features into a low dimensional semantic space is proposed for the applications of document classification and retrieval. Terms are extracted from the graph representation of document by employing weighted feature extraction method. 2-D wavelet transform is used to compress the graph due to its sparseness while preserving the basic document structure. After transform, low-pass subbands are stacked to represent the term associations in a document. We then develop a new dual wing harmonium model projecting these multiple features into low dimensional latent topics with different probability distributions assumption. Contrastive divergence algorithm is used for efficient learning and inference. We perform extensive experimental verification in document classification and retrieval, and comparative results suggest that the proposed method delivers better performance than other methods.
机译:提出了一种新颖的双翼和声模型,该模型将包括词频特征和二维小波变换特征在内的多个特征集成到低维语义空间中,用于文档分类和检索。通过采用加权特征提取方法从文档的图形表示中提取术语。二维小波变换由于其稀疏性而用于压缩图形,同时保留了基本文档结构。变换后,将低通子带堆叠起来以表示文档中的术语关联。然后,我们开发一个新的双翼和风模型,将这些多个特征投影到具有不同概率分布假设的低维潜在主题中。对比散度算法用于有效的学习和推理。我们在文档分类和检索中进行了广泛的实验验证,比较结果表明,该方法比其他方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号