首页> 外文期刊>Expert systems with applications >Applying multiobjective RBFNNs optimization and feature selection to a mineral reduction problem
【24h】

Applying multiobjective RBFNNs optimization and feature selection to a mineral reduction problem

机译:将多目标RBFNN优化和特征选择应用于矿物还原问题

获取原文
获取原文并翻译 | 示例

摘要

The Nickel reduction process is a complex task where many dynamic optimization problems arises that, nowadays, requires a human operator to take decisions based on his experience and intuition. In order to help the operator to optimize the reduction process in terms of maximum amount of mineral extracted and minimum energy consumption, a control system integrated by several modules is being designed. One of the modules has the task of predicting how much petroleum will be burned in the ovens where the raw material is processed. This paper proposes an algorithm to design Radial Basis Function Neural Networks that will be able to predict accurately the amount of petroleum given a set of input parameters. The algorithm is also able of identifying the most relevant input parameters for the network so the dimensionality reduction problem is ameliorated. Hence, this paper, as it will be shown in the experiments section is able to apply the synergy of different Soft Computing techniques to the industrial process obtaining satisfactory results.
机译:减少镍的过程是一项复杂的任务,其中出现了许多动态优化问题,如今,这需要人工操作员根据其经验和直觉来做出决定。为了帮助操作员在最大程度地提取矿物质和最小能耗方面优化还原过程,正在设计由多个模块集成的控制系统。其中一个模块的任务是预测在加工原料的烤箱中将燃烧多少石油。本文提出了一种设计径向基函数神经网络的算法,该算法将能够在给定一组输入参数的情况下准确预测石油量。该算法还能够为网络识别最相关的输入参数,从而减少了降维问题。因此,如实验部分所示,本文能够将不同软计算技术的协同作用应用于工业过程,从而获得令人满意的结果。

著录项

  • 来源
    《Expert systems with applications》 |2010年第6期|p.4050-4057|共8页
  • 作者单位

    Department of Computer Technology and Architecture, ETS lngenieria Informatica, E18071, University of Granada, Spain;

    Department of Informatics, Paraje Las Lagunillas, E23071, University of Jaen, Spain;

    National Center for Metallurgical Research (CENIM), E28040, Madrid, Spain;

    Department of Computer Technology and Architecture, ETS lngenieria Informatica, E18071, University of Granada, Spain;

    Department of Informatics, Paraje Las Lagunillas, E23071, University of Jaen, Spain;

    Department of Informatics, Paraje Las Lagunillas, E23071, University of Jaen, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    RBF; neural networks; regression; multiobjective; mineral reduction; feature selection;

    机译:RBF;神经网络;回归多目标矿物质还原功能选择;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号