首页> 外文期刊>Expert systems with applications >A qualitative comparison of Artificial Neural Networks and Support Vector Machines in ECG arrhythmias classification
【24h】

A qualitative comparison of Artificial Neural Networks and Support Vector Machines in ECG arrhythmias classification

机译:人工神经网络和支持向量机在ECG心律失常分类中的定性比较

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel use of Kernel-Adatron (K-A) learning algorithm to aid SVM (Support Vector Machine) for ECG arrhythmias classification is proposed. The proposed pattern classifier is compared with MLP (multi-layered perceptron) using back propagation (BP) learning algorithm. The ECG signals taken from MIT-BIH arrhythmia database are used in training to classify 6 different arrhythmia, plus normal ECG. The MLP and SVM training and testing stages were carried out twice. They were first trained only with one ECG lead signal and then a second ECG lead signal was added to the training and testing datasets. The aim was to investigate its influence on training and testing performance (generalization ability) plus time of training for both classifiers. Implementation of these three criteria for evaluation of ECG signals classification will ease the problem of structural comparisons, which has not been given attention in previous research works. The results indicate that SVM in comparison to MLP is much faster in training stage and nearly seven times higher in performance, but MLP generalization ability in terms of mean square error is more than three times less. The proposed SVM method shows considerable improvement in comparison to recently reported results obtained by Osowski et al. (2008).
机译:在本文中,提出了一种新的使用核-Adatron(K-A)学习算法来辅助SVM(支持向量机)进行ECG心律失常分类的方法。使用反向传播(BP)学习算法,将提出的模式分类器与MLP(多层感知器)进行比较。从MIT-BIH心律失常数据库中获取的ECG信号用于训练,以对6种不同的心律失常以及正常的ECG进行分类。 MLP和SVM培训和测试阶段进行了两次。他们首先仅使用一个ECG前导信号进行训练,然后将第二个ECG前导信号添加到训练和测试数据集中。目的是研究其对两个分类器的训练和测试性能(概括能力)以及训练时间的影响。实施这三个用于评估ECG信号分类的标准将缓解结构比较的问题,这在以前的研究工作中并未得到重视。结果表明,与MLP相比,SVM在训练阶段要快得多,性能要高出近7倍,但就均方误差而言,MLP泛化能力要低三倍以上。与最近由Osowski等人获得的结果相比,提出的SVM方法显示出了很大的改进。 (2008)。

著录项

  • 来源
    《Expert systems with applications》 |2010年第4期|3088-3093|共6页
  • 作者单位

    Department of Mechanical Engineering. Ferdowsi University of Mashhad, Iran;

    Department of Mechanical Engineering. Ferdowsi University of Mashhad, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ANN; SVM; ECG;

    机译:人工神经网络支持向量机;心电图;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号