首页> 外文期刊>Expert systems with applications >A novel prediction-based strategy for object tracking in sensor networks by mining seamless temporal movement patterns
【24h】

A novel prediction-based strategy for object tracking in sensor networks by mining seamless temporal movement patterns

机译:通过挖掘无缝时间运动模式的传感器网络中基于预测的新颖策略进行对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Energy saving in sensor networks has received a great deal of research attention in recent years due to its wide applications. One important research issue is energy efficient object tracking in sensor networks (OTSNs). Past studies on energy saving in OTSNs can be divided into two main directions: (1) improvement in hardware design; and (2) improvement in software approaches. Many research papers save energy in hardware design, but few discuss software approaches. The intuitive way to conserve the energy of sensor nodes is to reduce the operation time of high-powered components. Utilizing the movement patterns of objects to save energy is one software approach. However, it did not take temporal information into consideration nor did it define a suitable segmenting time unit of time interval in advance. Due to the time interval between movements is a real number, an improper segmenting time unit may not discover the useful patterns, directly resulting in the inefficient object tracking. In this paper, we propose a seamless data mining algorithm named STMP-Mine to efficiently discover the temporal movement patterns of objects in sensor networks without predefining the segmenting time unit. Moreover, we propose novel location prediction strategies that employ the discovered temporal movement patterns to reduce prediction errors to save energy. With empirical evaluation on simulated data, STMP-Mine and the proposed prediction strategies are shown to deliver excellent performance in terms of scalability and energy efficiency.
机译:传感器网络中的节能技术由于其广泛的应用,近年来受到了广泛的研究关注。一个重要的研究问题是传感器网络(OTSN)中的节能目标跟踪。过去对OTSN的节能研究可以分为两个主要方向:(1)改进硬件设计; (2)改进软件方法。许多研究论文节省了硬件设计的能量,但很少讨论软件方法。节省传感器节点能量的直观方法是减少高功率组件的工作时间。利用对象的运动模式以节省能源是一种软件方法。但是,它没有考虑时间信息,也没有预先定义时间间隔的合适分段时间单位。由于运动之间的时间间隔是实数,因此不正确的分段时间单位可能无法发现有用的模式,从而直接导致对象跟踪效率低下。在本文中,我们提出了一种无缝数据挖掘算法,称为STMP-Mine,可以有效地发现传感器网络中对象的时间运动模式,而无需预先定义分割时间单位。此外,我们提出了新颖的位置预测策略,该策略采用发现的时间运动模式来减少预测误差以节省能源。通过对模拟数据进行实证评估,显示了STMP-Mine和拟议的预测策略在可伸缩性和能效方面均具有出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号